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Abstract
We present two generalisations of Roth’s approximation theorem on proper adelic curves, assuming
some technical conditions on the behavior of the logarithmic absolute values. We illustrate how
tightening such assumptions makes our inequalities stronger. As special cases we recover Corvaja’s
results [Cor97] for fields admitting a product formula, and Vojta’s ones [Voj21] for arithmetic function
fields.

0 Introduction

0.1 History

The celebrated Roth’s theorem proved in [Rot55] asserts that the irrationality measure of a real
algebraic number is 2. An equivalent, but more detailed statement is the following:

Theorem 0.1 (Roth). Let a be a real algebraic number and let € > 0 be a real number. Then there
exists a real constant C(a, ) > 0 such that for every pair of coprime integers (p,q) with ¢ > C(a,¢€),

it holds that:
2—¢

a—g‘>q7
q

The above statement can be naturally generalised in different directions by considering a number
field K instead of Q and the simultaneous approximation of the elements a1, ..., a, algebraic over
K by an element of K with respect to different valuations (see [Lan83, Chapter 7]). Actually, the
statement proved in [Lan83, Chapter 7] holds for fields that are more general than number fields. At
the moment we don’t have an effective version of Roth’s theorem i.e. a bound for the constant C(«, €)
(see [Cor95]), but we have quantitative versions i.e. bounds, in terms of « and &, on the number of
good approximants (see [DR55], [BvdP88], [BvdP90], [Gro90], [Sch95], [Eve97], [BGO6, Section 6.5]).

Let k be a field of characteristic 0 and let Vi be a set in bijection with a family of absolute values
of k. The bijection is denoted by v — |- |, for any v € Vi, and we don’t put any restriction on
the cardinality of Vi, therefore we recall that a sum over an uncountable set is defined to be the
supremum of the sums over all finite subsets. The couple (k, V) satisfies the product formula if for
any element a € k™ the series 3° ,, loglal, converges absolutely and moreover log|al, = 0.
In this setting one also has a natural notion of logarithmic height for a € k*:

h(a) := Z log* |aly,
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and we set H(a) := e™®. Roth’s theorem was generalised by Corvaja in [Cor97] for any couple

(k, Vi) satisfying the product formula:

Theorem 0.2. [Cor97, Corollaire 1]. Assume that (k, Vi) satisfies the product formula. Let as, ..., an
be algebraic elements over k, and let |- |vy, ... ]| |v, be distinct absolute values of k, with v1,...,v, €
Vi. For any i =1,...,n let’s fix an appropriately normalised extension of | - |, to k(o) (and by
abuse of notation denote it with the same symbol | - |,, ). Then for any € > 0 there exists a constant
C=CWVk, 1y, Qn,V1,...,0n,&) >0 such that for all B € k with H(B) > C' it holds that:

S loglai — Blu, > ~(2+ £)h(B)
i=1

Notice that there are no further assumptions on the field k, which might be for instance a function
field; therefore, theorem 0.2 is a unifying result, as well as a generalisation of the classical Roth’s
theorem. Moreover, in the same paper Corvaja obtained also a quantitative version of Theorem 0.2
(see [Cor97, Corollaire 3.7]).

An arithmetic function field, is a finitely generated field over Q. The “geometrisation” of these
fields in terms of Arakelov geometry is wonderfully explained in [Mor00]. Recently, Vojta in [Voj21]
proved a version of Roth’s theorem for arithmetic function fields with a big polarisation. For obvious
reasons this can be considered as a “higher dimensional” generalisation of Roth’s theorem. We
conclude this short historic overview by explaining the statement of Vojta’s result. A big polarisation
of an arithmetic function field K consists of a couple (X, £) where:

(¢) X — SpecZ is a normal arithmetic variety whose function field is isomorphic to K.

(ii) Denote with d the relative dimension of X over SpecZ; then £ = {Z1,....Z4} is a collection
of hermitian, arithmetically nef and big line bundles.

Now fix an arithmetic function field K with a big polarisation; then we can define a geometric height
function h for a prime divisor Y as the Arakelov intersection number of the hermitian line bundles
yh . 7§d restricted to Y. We can now define a non-archimedean absolute value on K, associated
to Y:

laly = e Pz(Merdy (@) y4 e K

Moreover, for any closed point p € X¢ = X Xgpecz Spec C that doesn’t come from the base change of
a divisor on X we have the following archimedean absolute value:

lal, := \/a(p)a(p) Va € K.

By putting all together, we get a set of absolute values Mk which turns out to be a measure space
with a measure that we denote with p. The notion of product formula holds true for the couple
(K, Mk) in the following form:

/ log |a|,du(v) =0, Vae K*
Mg
Moreover there is a notion of height for any element of a € K*:

hi(a) := / log™ |al, du(v) .
Mg

We set Hgi (a) := ¢"5(%)  One of the 4 equivalent versions of Vojta’s generalisation of Roth’s theorem
is given below.

Theorem 0.3. [Vo0j21, Theorem 4.5] Consider a couple (K, Mk) where K is an arithmetic function
field with a big polarisation such that L1 = ... = L4, and Mk is a set of absolute values as explained
before. Let S be a subset of Mk of finite measure and fix some distinct elements o, ...,a, € K.
Then for any € > 0 and any ¢ € R there exists a real constant C > 0 (depending on the fizved data)
such that for any B € K with hix(8) > C it holds that:

[ min (108 8 - aul.) diw) > ~(2+ Phc(8) ¢ 8

S 1<i<n

0.2 Results in this paper

The goal of this paper is to generalise Roth’s theorem in a wider framework which includes Corvaja’s
and Vojta’s settings.

The theory of adelic curves introduced by Chen and Moriwaki in [CM20] provides such natural
framework: an adelic curve X consists of a field K of characteristic 0 and a measure space (2,4, 1)
endowed with a function ¢ : w +— | - |, that maps Q into the set of places of K and such that



w > loglal. is in L'(Q,p) for any a € K*. On X we have a well defined notion of height hx, and
moreover a “product formula” which is expressed as an integral over 2. The adelic curves satisfying
this product formula are called proper. The fields with a product formula of [Cor97] are trivially
proper adelic curves when the set of places is endowed with the counting measure. Moreover in
[Voj21, Section 3] it is shown that arithmetic function fields can be endowed with a structure of
proper adelic curve.

In this paper we prove two generalisations of Roth’s theorem for proper adelic curves. The main
results will be stated in terms of some inequalities involving the integral of the measurable functions
w > log™ |8—ai|w where a1, ..., a, € K are the elements we want to approximate by an approximant
B € K. Unfortunately, the bare definition of proper adelic curves is too general to give any meaningful
result in the direction of Roth’s approximation theorem, since the functions log™ |8 — a;| can be in
principle very “wild”. Therefore, we have to impose some analytic conditions on such functions in
order to get the desired Roth’s theorems. We will see that these assumptions are not too artificial,
in fact we recover Theorems 0.2 and 0.3 as special cases.

The first condition we impose on our adelic curves is the strong p-equicontinuity (see definition
4.1): roughly speaking it means that for any set of finite measure S C 2 one requires for the functions
w — log|B|w, to be “equicontinuous” almost everywhere on S. Under such hypothesis we prove the
following theorem:

Theorem (A). Let X = (K,Q,¢) be a proper adelic curve satisfying the strong p-equicontinuity
condition. Let S = S1USU...US, CQ be the disjoint union of subsets of finite measure. Fiz some
distinct elements au,...,an € K, then for any € > 0 there exists a real constant C' > 0 (depending
on the fized data) such that for any S € K with hx(8) > C it holds that:

> / og™ 18— auludp(w) > —(2+ &)hx(5). (2)

We will show that Theorem 0.2 is a consequence of Theorem (A), but on the other hand Vojta’s
inequality is stronger and moreover it doesn’t depend on the fixed partition of S. Nevertheless, we
get a generalisation of Theorem 0.3 under the following hypotheses:

e We slightly relax the strong u-equicontinuity condition and we allow the existence of arbitrary
small sets where the equicontinuity fails (see Definition 5.1).

e We assume that the functions w — log™ |8|. are uniformly integrable while 8 varies (see defini-
tion 5.2)

Our second main theorem is then the following:

Theorem (B). Let X = (K, Q, ¢) be a proper adelic curve satisfying the p-equicontinuity condition
and the uniform integrability condition. Fix some distinct elements ai1,...,a, € K. Let S be a
measurable subset of Q0 of finite measure. Then for any € > 0 and any ¢ € R there exists a real
constant C > 0 (depending on the fized data) such that for any 8 € K with hx(8) > C it holds that:

[ min (087 18 = cule) dife) > ~(2+ )hx(8) + ¢ (3)

Finally, in Example 5.4 we show that Roth’s theorem(s) and (as a consequence) the strong p-
equicontinuity condition don’t hold for all proper adelic curves; in our example we consider Q endowed
with a natural structure of adelic curve naturally inherited from Q.

Our strategy consists in weaving together the ideas of Corvaja and Vojta to get rather elementary
proofs which are independent from Arakelov geometry. On the other hand we don’t have, at the
moment, any examples of interesting proper adelic curve different from the ones already known. It is
a much harder problem to find new concrete cases in which Roth’s theorem holds. After all, a highly
nontrivial achievement of Vojta’s work consists in showing that the p-equicontinuity and the uniform
integrability hold for arithmetic function fields. He does this by using the geometry of complex fibres
at infinity appearing in Arakelov geometry.

The very coarse overview of the proofs is the following: Roth’s theorem is about the simultaneous
approximation of some distinct elements «1,...,a, that by simplicity (in fact it will be enough
to consider this case) can be fixed in K, with an element S € K. The existence of a very special
“interpolating polynomial” § for such elements (section 2) allows us to write some integral estimates
for measurable functions on () satisfying some technical properties related to the heights of the
a;’s and B (section 3). Then, assuming that Roth’s theorem is false leads to the construction of
a measurable function 6 : S — R> that gives the desired contradiction on the integral estimates
previously found. The crucial point of the proof consists in the construction of 6, and this is exactly
where we need the additional technical conditions on the adelic curve.

We finally mention that section 1 is a brief review of the theory of adelic curves introduced in
[CM20], and moreover that Appendix A sketches the construction of the interpolating polynomial
employed in [Cor97].
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1 Adelic curves

We will use the following notations throughout the whole paper:

log" & := max{0,logz}, log~ z:=min{0,logz}; Vz € Rso

In this section we closely follow [CM20, Chapter 3|. For simplicity we restrict to the characteristic
0 case, but all the definitions work also in positive characteristic.

Definition 1.1. Let K be a field of characteristic 0, let Mg be the set of all absolute values of K and
let Q = (Q, A, 1) be a measure space endowed with a map

¢:S] — Mg
w =] o= gw).

such that for any a € K*, the real valued function w — log|al, lies in L'(Q,u). The triple
X = (K,Q,¢) is called an adelic curve; Q and ¢ are respectively the parameter space and the
parametrization. We denote with Q. the subset of  made of all elements w such that | - |, is
archimedean. We set Qg := Q \ Qoo.

Remark 1.2. We also recall that a more general notion of adelic curve, with the requirement that
| - | is an absolute value only almost everywhere for w € €, had been already given in [Gub97] under
the name of M-field.

It is easy to show that the set o is always measurable [CM20, Proposition 3.1.1].
Definition 1.3. An adelic curve X = (K, Q, @) is said to be proper if for any a € K*:

/ log|alw dp(w) = 0. (4)
Q
Let’s see examples of adelic curves:

Example 1.4. Any field (k, V) satisfying the product formula in the sense of [Cor97] is a proper
adelic curve. In fact in this case Q2 = Vy, ¢ is the identity and p is the counting measure.

Example 1.5. An arithmetic function field K with a big polarisation is a proper adelic curve. A
quick description of this has been already given in section 0.1. For details see [Voj21, Section 3].

Example 1.6. A polarised algebraic function field (in d > 1 variables) over a field of characteristic
0 can be endowed with a structure of proper adelic curve. For details see [CM20, 3.2.4].

In the remaining part of this section we study the behaviour of adelic curves with respect to field
extensions. In particular let’s fix an adelic curve X = (K, Qk, ¢x), and let L be a finite extension of K,
our goal is to endow it with a canonical structure of adelic curve “coming from K”. In other words,
we have to define a parameter space {21, and a parametrization ¢r, in a canonical way by starting from
Qk and ¢r. For any w € Qx we denote with My, the set of absolute values of L extending | - |, so
we put:

Qui= || Mg
wENK
and we have a natural projection map 7k : 1. — {2k whose fibres are My, ., for any w. The inclusion
My, C My clearly induces a parametrization ¢r.: Q1 — My and for any v € Qp we put |- |, := ¢L(v).
We obtain the following commutative diagram:

TLIK
Q]L *‘> QK

l(b}; l@& (5)

ML%MK



where the bottom map is the restriction function. Note that € can be abstractly defined as the
fibered product in the category of sets. Now on 1, we put the o-algebra B generated by mx and
all the real maps Qi > v + |a|,, for any a € L* (on R we put the standard Lebesgue measure). We
want to define a suitable measure n on the measurable space (Qr,B). This requires a bit of work,
since in general there is no straightforward definition of pullback measure through a measurable map.
Nevertheless, in the case of our 7 x we explain how it is possible to define the pullback n = 7 ki
(actually this is a construction from measure theory which works in full generality any time we have
a measure fiberwise). Consider a fiber My, C Qu, then for any v € My, we can put
LK

Po(v) = LK (6)
where L, and K, denote the completions with respect to |- |, and |- |, respectively. Thanks to the
well known equality >°, . [Lu : Ko] = [L : K] (See [Neu99, Ch. II, Corollary 8.4]), we conclude
that equation (6) induces ayprobability measure on the fibre My, ., with respect to the power set.
Now, for any function f : QL — R, by using the fiberwise integral along each probabilised fiber M, ,,
we define the map Ik (f) : Qx — R as:

Ink(f) :w— fdP., = Z P,(v)f(v)

My,w veEMy,,,
Proposition 1.7. The linear operator Ik sends B-measurable functions to A-measurable functions.
Proof. See [CM20, Theorem 3.3.4]. O

At this point we are ready to define the measure 7. For any E € B we put:
w(B) = | Lele) du 7
K

where xg is the characteristic function of E. Note that the integral of equation (7) makes sense
because of Proposition 1.7.

Theorem 1.8. The following statements hold:

(1) The map n defined above is a measure on (0, B) such that for any B-measurable function f we
have

dn = du .
Q[Lf n /QK[LUK(f) i

(2) f e L'(n) if and only if I (|f]) € L' (1).
(3) The pushforward measure of n through myx is p.

(4) With the above constructions the triple Y = (L, Qu, ¢r) is an adelic curve. Moreover for any
bel”
L) [ loglbludn(v) = [ 1og|Nee®)odle) (®)
QL Qg
and in particular if X is proper, then also Y is proper.

Proof. See [CM20, Theorem 3.3.7]. O

At this point we study algebraic extensions of adelic curves. Let’s fix the adelic curve X =
(K,QK, ¢x) and let L an algebraic extension of K. We denote with Fyx the family of finite field
extensions on K contained in L. Clearly Fx is a directed set with respect to the inclusion, and for
any K', K" € Fyx such that K’ C K" we have a morphism of measurable spaces

Tk s (e, B) = (Qx, BY)

and an operator Ix g sending integrable functions to integrable functions as described above in the
case of finite extensions. In other words we obtain an inverse system of measure spaces, and we
would like to define the adelic structure on L as “a projective limit”. Unfortunately, in the category
of measure spaces we don’t have a straightforward notion of projective limit, therefore we need again
a bit of extra work. We can define respectively My .,, QL and ¢r: Q21 — My exactly as we did before
in the case of finite extensions, but we need to construct an adequate structure of measure space on
Q. For any K’ € Frik we have a map 7/ : QL — Qg and a square diagram like (5). It turns out
that 7 g/ is surjective [CM20, Proposition 3.4.5]. We endow €, with the o-algebra 3 generated by
the maps {7 g/ }K/Ef]LlK, and it can be shown that (Qr, X) is the projective limit of the inverse system
{(Q, B')}K/G}-L“K in the category of measurable spaces. It remains the issue of putting a canonical



measure A on (r,X). This process is quite technical, but similarly to the case of finite extensions, it
can be done by using a fiberwise integration on each M, .; all the details are given in [CM20, 3.4.2].
What we really need is the fact that we can construct an adelic curve (I, Qr, A) which is proper if X
is proper and such that for any f € L'(x) we have that f o LK € L'()\) with

/ (Fompdr= [ fdu. (9)
QL Qx

Below we give the notion of height for proper adelic curves:

Definition 1.9. Let X = (K, Q, ¢) be a proper adelic curve and let K be an algebraic closure of K.

Then we have a proper adelic curve X = (K, Q, ¢) and the (naive) height of an element a € K™ is
defined as:

hx(a) := /ﬁlogJr lal, dx(v).

where v denotes a generic element of Q and Y is the measure on . Moreover we set Hx := e/,

From now on we always assume that for an adelic curve X = (K, 2, ¢) we have fixed algebraic
closure of K, therefore also X is fixed and we use the same notations of Definition 1.9. If for v € Q,
| -|v is an archimedean absolute value, then by Ostrowski’s theorem we know that there exists a real
number ¢(v) €]0,1] such that |- |, = |- |[**) where on the right we mean the standard euclidean
absolute value on R or C. Thus we have a map ¢ : Qoo —]0, 1] which can be extended to & : 2 — [0, 1]
by putting €5, = 0. For instance, for an archimedean |- |, we have log[2|, = (v)log2, therefore

we obtain the explicit expression of the function € on the whole Q:

_ log" |2],
T log2

e(v)

Clearly £(v) is a measurable function. We can always take a scaling p’ of the measure p on € so that
get a new height h%k that satisfies h%(2) < log2. Notice that if X is proper, then it remains proper
after any scaling of the measure p. From now on, when we are given an adelic curve X = (K, £, ¢),
we can always assume that we have performed the above mentioned scaling of the measure p on 2
so that hx(2) < log 2.

Definition 1.10. Let P(Xy,---, Xn) be a polynomial over K, o € K" and i = (i1,--- ,in) € NV,
We set: L )

1 811+12+~~+7«NP
i1lig! - in! 6Xf18X;2 .. 8X§VN

We can define the local height of P at v € Q in the following way:

A*P(a) =

(c).

hy(P) :=log (max {’AiP(O, ..., 0)

iENN

and then we have also the notion of global height of P:
he(P) = | hu(Pyix(v)
Q

We put Hyx(P) := e,
The following estimates of log |A*P(a)|, in terms of the local height of P will be very useful later:

Lemma 1.11. Let (K, |-|.) be a field with an absolute value. Let P € K[ X1, ... Xn] such that N > 1.
Then for every o € KN

N
log| A P(e)]w < h(P) + log” +> (log" 2] +logt[a].)deg P

w j=1

H (1 + degy, P)

Jj=1

Proof. See [Cor97, Lemme, page 166]. O

We conclude the section with some rather straightforward results about heights. First of all when
we want to calculate the heights of elements lying in K*, we don’t need to involve the algebraic
closure K in the integrals:

Proposition 1.12. Let X = (K, , ¢) be an adelic curve. If a € K*, then:
he(a) = [ log* aludu(w).
Qg

Moreover, the same result holds for the heights of polynomials in K[X1,..., Xn].



Proof. Tt is an immediate consequence of equation (9). O

In order to simplify the notations, we often omit the subscript X attached to the heights when
the adelic curve is fixed and there is no confusion.

Proposition 1.13. The height function of a proper adelic curve (X,Q,¢) satisfies the following
properties for any a,b,a1,...,am € K and any measurable set S C Q

(1) h(a) = h(a™)

(2) —h(a) < [;loglalwdu(w) < h(a)

3) fs 1og (aludpi(w) > ~h(a)

(4) h(ar+...+am) <h(m)+h(a1) + ...+ h(am)

(5) Jylogla— bludp(w) > —log2 — h(a) — h(b)

(6) [slog™ |a — blwdu(w) > —log2 — h(a) — h(b)

Proof. (1) It follows from the product formula and from the fact that log |a|. = log™ |a|, —log

(2) By definition [log|alwdu(w) < h(a), so for the other inequality it is enough to use (1).
(3) We use the equality log™ |al, = —log™ |a™!|., and we obtain:

+ 11
|2l

[ 108" lalodis@) = - [ tog* o |udu(w) > ~h(a™") = ~h(a)
S S

(4) It follows from |a1 + ... + am|w < mmax; |a;|w.
(5) and (6) are direct consequences of (2)-(4) and the fact that h(2) < log(2). O

Here we stress that the entries (5)-(6) of Proposition 1.13 replace the classical Liouville inequality
for heights. Finally we recall an important property of heights:

Definition 1.14. A proper adelic curve X = (K, , p) satisfies the Northcott property if for any
C € R the set {a € K: hx(a)} < C is finite.

Arithmetic function fields satisfy Northcott properties thanks to [Mor00, Theorem 4.3].

2 The interpolating polynomial

We fix a proper adelic curve X = (K, 2, ¢) and an algebraic closure of K. In this section we recall the
existence of an interpolating polynomial § € K[X7, ..., Xn] associated to some elements a1, ..., an, €
K¥ having some explicit bounds on: the degree, the d-index at all the o;’s and the height. The
complete construction of ¢ can be found in [Cor97], and we will recall it in appendix A.

We fix for the whole section the following data: two natural numbers n, N > 2, and a vector
d = (di,...,dn) € (Rs0)N. We say that two vectors a = (aV,... M), g = (B<1) o B are
componentwise different if o) £ 89 for j =1,...,N.

Definition 2.1. The d-indezx of P(X1,...,Xn) #0 at o € K" is the real number:

ieNN

Inda,q(P) := min {Zd eR: A'P(a );AO}

Let’s fix t € R such that 0 < ¢t < N, the following two sets will play a central role in the theory:

gt:_{ieNN:ijgdjVj—l, ,N, andz U <t}

Jj=1

C = {(ml,...,xN e 0,1V ij gt}

The Lebesgue measure of C; will be denoted as V(t), and for simplicity of terminology we will refer
to it simply as “volume”.

Lemma 2.2. The cardinality of G+ is asymptotic to dida...dnV (t).

Proof. See [BG06, p. 157]. O



Now fix some vectors o, ..., o, € KV where oy, = (azl), .. .,aiLN)) for every h = 1,...,n and
let X = (X1,...,Xn) be a vector of variables. For any two multi-indices a = (a1, a2, ...,an) and
i = (i1,12,...,in) of NV we use the following notations:

(0= () ()

i 1)y 2)\i N)yi
a = () (@))% ()
Xt = XX XY
with the convention (Z) = 0if 0 < p < g for the binomial coefficient. Now, consider v € R such that

0 <7 < 5-%=; we always assume that dfi%

that d; = O(dy) for any j. We also put 1 := 2yn < ﬁ and d := didz ... dN.

We have the following result about the existence of a polynomial 6(X1,...,Xn~) € K[X1,... Xn]
with some prescribed properties. In the appendix A we will sketch Corvaja’s construction of (X1, ..., Xn)
adapting it to the case of adelic curves:

<~ forany j=1,...,N — 1, which means in particular

Proposition 2.3. Assume that in the adelic curve X the condition hx(2) < log2 is satisfied and
assume that the number n € R is chosen as explained above. Let’s fix some vectors o, . .., o, 3 € KV
that are pairwise componentwise different. Moreover let’s choose some parameters s,t1,...,tn, € R,
with 0 < s <1 and 0 < t) < % for h = 1,...,n such that the following condition on volumes is
verified:

1+n)Y <V(s)+ > V(ta) <1+2Nn (10)
h=1
Then there exists a polynomial 6(X1,...Xn) € K[X1,..., Xn] satisfying the following properties:
(1) &(B) #0;
(2) degy,d < dd;V(s) +O(d), for 1 < j < N;

(3) Inda, .a(6) > dV(s) (th —s— QVN(jy) + 0@, for 1 < h < n;

(4) hz(6) <d> d; (log2 + zn: V(th)h(ag”)) + O(dlog d);

h=1

Proof. See [Cor97, Proposition 2.6]. O

3 Integral estimates

This technical section is “the heart” of the proof of our results since here we will prove some integral
bounds for very particular integrable functions 6 : S C Q@ — R>o. We continue with all the notations
fixed in section 2 since we want to make full use of Proposition 2.3.

Consider an adelic curve (K, Q,$) and a set of vectors ai,...,a,,3 € K" which are compo-
nentwise different. We construct the following matrices T := T(au1,...an) € M(n x N,K) and
T(B) € M(n+1x N,K):

(1) (2) (N)
(1) (2) (N) (o7 ay oh
o3 ay ooy o) o tn
PN CORNC) oy Qg Qg Qg
2 2 2
‘ ’ : : (1) (2) (N)
a£}) 04512) o aglN) Qi a, L. Qg

We denote by al, j=1,..., N the columns of T, that is:
)
ol |
o)
and by ay, for h € {1,2,...,n}, the rows:

ap = (ag), a?, . ,aELN))

Note that we are asking for the matrices T" and T'(3) to have componentwise different rows. Now we
need to define a list of properties depending on the aforementioned matrices:



Definition 3.1. For the matrix T'(3), consider the following real numbers for any j =1,..., N:

pi = 4 H(E) T Hof?)™ (1)
h=1

oy = 4V HED) [[ Ho?)s (12)
h=1

We say that T'(3) satisfies the h-gap property if the following inequality is satisfied:

log p; 1 .
Vi=1,...,N—1
log pf;, 4 < 1NNV I

Definition 3.2. Fix a measurable set S = S U ... S,. We say that an integrable function
0: S — Rxq is a column bounding function for T(B) on S if the following inequality holds:

1
log p;

logla? — 9|, >0(w) Vj=1,...,N,Vh=1,...,n, Vw € Sy (13)

Definition 3.3. Fix a measurable set S = 51 U...US,. For any column a? ¢ KN of the matrix
T and any b € K we define the following quantity:

n

1 1
Vi) log4 + h(b) + V()

Aa | b) = V(tn)h(af”)

h=1
Definition 3.4. We say that T'(3) satisfies the A-gap property of width n € Ry if
@ gG)
max M BT)
1<j<N-1 M@+ BU+1) m

Definition 3.5. Fix a matrix 7'(3). An integrable function 0: S — R>¢ is A-bounding if:

-1 G) _ gl) P . Vh = :
Wlog\ah 7/8 |w20(w) VJ—l,...,N,Vh—l,...,n,vweSh (14)

Remark 3.6. Note that if 6 is A-bounding or column bounding then it follows immediately that
\aﬁf) — 8P|, <1forany j=1,...,N,h=1,...,n, w € Sh.

The following easy lemma will be useful:

Lemma 3.7. Let x,y € K and let w such that |x — y|l, < 1. Then log" |z|w < logt |2]., 4+ log™ |ylw.

Proof. We distinguish two cases:
| - | is ultrametric. Then

[z]w = |z —y + ylo < max {|z — ylo, |ylo} < max{1,|yl} .

If |yl > 1, then clearly log" |z|. < log™ |y|w. If |yl < 1, then |z|, < 1 which means 0 = log™ |z, <
log™ |2|w + log™ [yle.
| - |w is archimedean. By Ostrowski’s theorem | - |, = | - |*“), therefore

1 _1_ _1_ 1
2157 < o= ylE + IS <1+ lE

1 1
This clearly means |z|5*) < 2max {1, |yl } After raising each side to the power of e(w) and
applying log™ we get the claim. O
Now we prove the analogue of [Cor97, Proposition 3.1].

Proposition 3.8. Let (K, 2, ¢) be a proper adelic curve. Fix a matriz T(B). Let n,s,t1,...,tn €R
such that all the hypotheses of Proposition 2.3 are satisfied. Assume that T(B) satisfies the A-gap
property of width n (see Definition 3.4) and that 0: S — Rx>q is A-bounding for T(B) (see Definition

3.5), then
Z(th—s—@gf)/S}LedpgN

h=1




Proof. Fix a real number D > 0, and for every j =1,..., N, we put
__b

NCENED!

and d := H;.V:l d;. Note that here we use the A-gap property to ensure that a4,
as explained before Proposition 2.3. So, the hypotheses of Proposition 2.3 are all satisfied and we

have the interpolation polynomial ¢ such that §(3) # 0. We start by distinguishing two cases.
First case: w € Sp. By the Taylor expansion for ¢ at aip, we write

dj :=

dj“ < v since n = 2ny

ZA §(an H (B9 — a5 where i = (i1, ..., in) (15)

Notice that each term

1) H(ﬂ(])

j=1
is bounded from above by:

N
(max Aid(ah)) (mBX H(B(j) _ O‘(hj))ij> ’
T T
j=1
where in order to simplify the notation we define
max := max

Aia(;h);to

Let’s put M := H;.V:l(l + degy, d); so by taking the absolute value | - |, in equation (15) we get

[T = agys (16)

j=1

log|6(8)]w < log™ |M|., + max log ’Aié(ah)‘ + max log

The last summand of equation (16) is bounded from above by

1 1
—Inda, ,4(0) min ¢ dilog————, ..., dylog ——————— 5 .
' 1BD — afl. 1B — iV,

We use Lemma 1.11 to give an upper bound for log |Ai6(ah)‘w, hence from equation (16) we deduce:

/S log [5(8)]du(w) <

N
< / log™* | M wdp(w) + / (hww)+log+|M|w+Z<log+|2w+1og+|a<” o) deg )du(w)+
Sh Sh,

j=1
/ Ind () min | d; log L dn log L dp(w)
— nde,,,q4(0) min < di ——— ...,dN ———— dp(w
s 80— afP ) — oy
So, by rearranging the terms and summing over all h = 1,...,n we get

- 1 1
Inda,a/mindlo — . ..dylog——MMM—— dwg—/lo 5(8)|wdp(w
2 Inday.al® [ { B a8 (M'w} uw) < = [ Tog|6(B)|du(w)

2 / log ™ [M]udpu(w) + / 8)dp(w +2 / 5 (log™ 12 + log* Jal? o) degy, 6dp(w) (17)
S

h]l

At this point we can use Lemma 3.7 and Remark 3.6 for the following bound:

N
Z/ Z (log™ [2|w+1log® |a§lj>| ) degx ddpu(w /Z (log™ 4| +log™ |,B(J)\w)deng5d,u(w) (18)
Shj 1
to obtain

< 1 1
Inda ,dé/ min{ dyjlog———— ... jdylog ————— 5 du(w S—/logéﬂ wdp(w)+
S e e < - [ sl

N

+2 /S log* [M]udu(w) + /S ho (8)dp(w) + /S S (log" 41, + log* |80"].) degx ddp(w) . (19)

j=1

10



Second case: w ¢ S. Consider the expression:

B) = A%(0)"Mn .. g where i = (i1, ..., in)

We take the absolute value:

N
log |6(B)]w < hew Z (log™ 8., dengd) + log™ |M|.,
j=1
Hence
N
[ 1ogl6@)ledn) < [ bo@dut)+d [ (og* 89 dogyd)du)+ [ log" [Mludu(w)
o\S \s =i/as o\S
(20)
Since (K, Q, ¢) is proper
—/log|6(ﬁ)\wdu(w)=/ log [6(8)]wdp(w) - (21)
s oS

The distinction of the two cases is now finished, so by using equation (21) and estimate (20) inside
(19) we get

- 1 1
Inde, a(8) | minddilog —— . dylog ——— L du(w) < 2h(M)+
>t al9) [ { 8 gw)a(m'w} () < 20(0)

+ [ hel@)aut +Z / (08" |9 desx )auteo)+ [ 3 Z10g+|4|w+10g+Iﬁ”)lw)degxﬁdu(@
) .

Since we can always assume that  is adequately normalised, we have [, log™ [4|.du(w) = h(4) <
log 4, therefore:

Z / (g 18| deg3)du(w) + [ Zlog+\4lw+log+\5(”|w)deng5du(w)S
Q\S

i( (BY) +10g4>degx(5

j=1

By plugging everything inside equation (22) we get

a 1 1
Indawd(i/ min < dilog ————, ..., dy log —————— » du(w) <
,; @, { 8D — il 51 — a1, [ )
< 2h(M Z( h(BY) +log4)degx(5 (23)

By the A-bounding hypothesis for T'(8) we can write

D
IXCTND

Then we use Proposition 2.3(3), so we can conclude

a 2N277>
D av(s) [ th — s — —— Odp <
St (== ) [ <

= 1 1
< Inda ’d(é)/ min{dl log——————,...,dn log}du(w) (24)
2 Inlena) [, 5D = aj”l. B — ai™lu

Now we are going to use again Proposition 2.3 to find upper bounds for the terms on the right hand
side of equation (23). By Proposition 2.3(2):

log|ﬁ(3>fa< lw > DO(w).

i (h(ﬁm) + log4) degy 6

j=1

( h(89) +1og4) (dd;V(s) + O(d)). (25)

HMZ

11



Proposition 2.3(4) says that,

N n
<dy d <log2 +> V(th)h(agﬂ)) + O(dlog d) (26)

j=1 h=1

So now (23) can be written in the following way:

n 2N2 N n )
DY dvi(s) (th —5— W;) Odp < 2h(M +d2dj (1og2+ZV(th)h(a§j))> +
h=1 Sh h=1
N

O(dlog d) +Z( B(BY)) +log ) (dd;V(s) + O(d))  (27)

Notice that since s <1 and N > 2 then V(s) <
log2 < log4. Then the expression

%, which is equivalent to the inequality V' (s)log4 +

n

N N
4> d; (log 24> V(th)h(ag))) +O(dlogd) + Y ( h(BY)) + log 4) (dd;V (s) + O(d))

h=1

is bounded by
dZd ( /3<J>)+1og4+2v7:h V(o §j>)> + O(dlog d)

h=1
But by the deﬁnitlons of d; and the function A it holds that

Z & < B89 + 10g4+z": i am)) — dV(s)ND. (28)

Therefore equation (27) becomes

dDV (s) > (th —5— %) /Sh Odp < dV (s)ND + O(dlog d)

h=1
since the terms 2h(M) and O(d) can be put together inside O(dlogd). Finally we divide both sides
by dDV (s) and we take the limit for D — 40 (i.e. d = 400) to conclude the proof. O

Theorem 3.9. Let (K, 2, ¢) be a proper adelic curve. Assume that the matriz T(8) € M(n x N,K)
satisfies the h-gap property (see Definition 3.1). Moreover fix N > 21%log2n and let 6: S — R>o be
a column-bounding function for T(B) (see Definition 3.2). Then

/ad“<2+77v10g2”
s VN

Proof. The proof is based on the exact calculation of the volume V(s) of [Sch91, Chap. 2, Lemma
5A, 5B]. It shows that for N > 2, s,p € Rso with0<s<land 0< p< %, we have:

1% (% - p) <e N (30)

We take t1 =ty = ... =t, = § — p, n = 55577 where p is a number such that:

_ 2
V(X o)l

o

2 n

Note that # > 5—. Now from equation (30) we get
2 2
— 1—-nN
P Sy
N > log ( n )

p < +/Nlog2n.

which implies easily

Now let’s take s as a solution of:

1+ —1+9N? < V(s) < 2Nn+nN* (31)

12



Here recall that 1 —nN? =nV (ty) = >_7_, V(ts) (compare with the condition (10)). From equation
(31) we get the following two conditions
1
N!' < —— < 2N!
< V(S) <
NI V(tn) _ 2N!
2n ~ V(s) n
Now we show that by using such conditions since T'(3) satisfies h- gap property, then it satisfies

7‘,( 5 < 2N! and V(t“)) < 2N' to

also the A-gap property of width 7. First let’s use the inequalities
bound A(a?, 39)) from above:

)\(am,ﬂ(j)) _

(J)
V()log4+h( ZVth

2N
< 2N!log4 + h(8Y)) + Zh 9 =log p; .

Then we use the inequalities N! < ﬁ and 2! < \f,((th) to bound A(aU*V, gUFD) from below:

/\(a(jJrl)’ ﬁ(j+1)) —

Gioy, L % (G+1)
V) log4 + h(BY 1Y) + V() ;V(th)h(ah ) >

n

. ! .
> Nllogd + h(89+D) + éin h(alD) = log gl .
h=1
Therefore now: ) ‘
Aa?, ) logp; 1 U

MaG+D BG+D) < logp, ~ 4nN2N! ~ 2n°
Note that as an immediate consequence of the last inequality it follows that all the hypotheses of

Proposition 2.3 are satisfied. Moreover, since 6 is a column-bounding function for 7'(3), then it is
A-bounding for T'(3). It means that we can apply Proposition 3.8 to get:

N

/ Odp < (32)

N 2nN?2
s 2P S T V

Since p < v/Nlog2n, N?n < V(s) and in particular N > max{ 9log Qn} we obtain:

log 2n?
2(p+s) n AnN < 2v/Nlog2n +2+4 < 3v/Nlog2n _ 3+/log2n <1
N V(s) N N VN
Therefore
N _ 2 < 2 <o 7v/log 2n

N _ o _ 2qN2 T 4 _ 2(pts) _ 4nN _ 3ylog2n vN

2 TP TS TV 1 N V(s) 1 VN N
Where the last inequality follows by the assumption N > 212 log 2n. O

4 Roth’s theorem for adelic curves (A)

Definition 4.1. A proper adelic curve X = (K, Q, ) satisfies the strong p-equicontinity condition
if for any measurable set S C 2 of finite measure and any real number £ > 0 there exists a finite
measurable cover C1,...,Cy, of S satisfying the following conditions: for all 8 € K* there exists a
measurable set Ug C Qoo such that p(Ug) = 0 and

|—log7 |8l + log™ |B|w/] <eh(B), Yw,w' €C;j\Ug, Vj=1,.

The following lemma is a simplified version of [Voj21, Lemma 8.10]. It can be seen as a generali-
sation of the Arzela-Ascoli theorem for measure spaces, with the advantage that one doesn’t need to
provide a uniform bound for the involved family of functions.

Lemma 4.2. Let X = (K,Q, @) be a proper adelic curve satisfying the strong u-equicontinuity con-
dition. Fiz o € K* and a measurable subset S C Q of finite measure. Let {Bx} be a sequence in K*
such that By # «, and h(Br) — +oo. Then for any € > 0 there exists a subsequence {Bkj} such that
for any j,£ € N big enough the following inequality holds on S\ U, where U C Qoo and u(U) = 0:

log™ o= B lw | logT | = Byl
h(Br;) h(Br,)

<e

13



Proof. Put hg = ming h(Bx) and A\x(w) = —log™ | — Bi|w. Fix e > 0 and let C4,...,C, be a finite
measurable cover as in Definition 4.1. Clearly by possibly passing to a refinement we can assume
that the cover is made of mutually disjoints sets. Let k € N; if ¢ € {1,...,r} is such that u(C;) =0
we define my,; = 0, otherwise if 4 is such that u(C;) > 0 we put

Mp,; = inf {t ER:p ({w €0 2’22‘:)) > t}) < u(gz‘)}

Notice that the sets:
Vk,i = {w cC;: )\k(w) < h(ﬁk)mk,z}, Tk,i = {L«) cC;: /\k(w) > h(ﬁk)mkﬂ}

have both measure at least @ Hence we get:

H(Ci)h(ﬁk)mk,i < h(Br)mi,idp < Akdp < / Ardy (33)
s

2 Th,i Tk,i

But by Proposition 1.13(6) we know that

/SAkdp < h(Br) ( log2 | Ae) | 1) < h(Bx) (logZ L) 1) (34)

h(Bk) ~ h(Bk) ho ho

So by putting ¢; = —2 (1°g2 + %‘;) + 1), equations (33) and (34) show that my,; < ¢;. Note that

w(Ci) ' ho
the constant ¢; doesn’t depend on k. It follows that all the vectors mi = (mg,1,...,mk,») € R", lie in
the hyper-parallelepiped [];_, [0, ¢;]. Now consider the small hyper-cubes Qx = [],_, [mx,: — &, m,i +
g], clearly there exists an index k € N and a sequence {k;} such that my,; € Qg for any j € N. We
now show that the subsequence {3, } has exactly the properties that we are searching for.
Consider any two elements fi; Bk, of the subsequence and w € S\ (ngj U Ug,,)- Let i be the

unique index such that w € Cj; pick w' € Ci \ U, . and w” € Ci \ Ug,, such that:
J

Ak, (W) < mp; ih(Br;)

Ake (w”) > mkeyih(ﬁke) :
Note that this is possible since ka- and T},,; have positive measure. In the following chain of
inequalities we use twice the strong p-equicontinuity condition (first for w,w’ and later for w,w”) and
the fact that |mg; : — mu,| < 2e.

Ak (W) Ay (W) | hla = Br;) <(Pr41A13(4))Akj (w') n <1+ log2—|—h(a)> e <

< €
h(Br;) — h(Bx;) h(Br;) h(Br;) h(Br;)
log 2 + h(a)) ( log 2 + h(a)) Ak, (W) ( log 2 + h(a))
<mp. i+ |1+ —F—F)e<mgi+ |3+ —FF—— )< +(3+ e <
s ( h(Bi;) " h(B;) h(Br,) h(Br,)
Aoy (w) ( log?2 + h(a) log?2 -+ h(a))
< + 4+
h(Br,) h(Bk;) h(Bk,)
Since h(Bk) — +oo for j and £ big enough the above inequalities say:
Akj (w) )‘kz (w)
< + 5¢
h(Br;) ~ h(Br,)
By swapping the roles of j and ¢ we obtain in the same way
Akz (w) Ak]’ (w) +5e
h(Br,) — h(Br;)
The claim finally follows by the arbitrariness of €. O

Proof of theorem (A). When n < 2, from Proposition 1.13(6) we deduce that any approximant
[ such that
nlog2+ 3" h(as)
2—-n+e

h(B) >

satisfies the desired inequality.

Assume n > 3. We consider the following matrix of dimension n x N, where N > 212 log 2n will
be a big enough fixed integer:

a1 aq P a1

(%) a2 e a2
T =

Qp Op ... Op



notice that we have repeated N times the same column vector. Assume by contradiction that the
theorem is false. Namely that there exists an €9 > 0 such that the inequality

Z/S log™ |8k — i]wdp(w) < —(2 + &0)hx(Bk) (35)

is satisfied by a sequence {8k }ren in K with the properties that h(8r) — +oo. Pick a constant:

L > log (4”’ [T H () 25’)

=1

Since h(Br) — +00, by eventually passing to a subsequence, we can assume that {h(8x)} is increasing
and bounded from below by a very big value. Therefore we can assume

Lo 2L L+h(B) 8ViegZn
* 7 h(Br) h(Br) VN

Choose any N elements from the sequence {fx}, call them BWY . ..., ™) and consider the following
matrix T(03):

, VkeN (36)

(e%] (e5] . (051

a2 a2 o a2
T(B) =

O On n

ﬂ(l) 5(2) ﬂ(N)

We are ready to construct some functions 6, € Ll(S, w) which will give the desired contradiction.
We define them as piecewise functions by putting for any w € S; and any k € N:

_ —log™ [Bk — il
Ok) = = )

Now we can write

n -1 - _ cq.35) (24 ¢€0)h(Br)
Oudi =3 [ Oudn= o [ o 18— auledu(e) 20 EESIED (o)
Joon =3, ot = iy 22, R
By plugging inequality (36) inside (37) and simplifying the expressions, we finally get:

8+/log 2n
N

N Vk eN (38)

/de,u>2+
S

Thanks to Proposition 1.13(6):

Bi + h(Bk)
/Si U AN

for B; € Rsq. So, if B = max;{B;} we obtain:

nB + nh(Bk)
JLown <"

Then after possibly passing to a subsequence of {6x}, we can assume that fs Ordp admits limit and
by inequality (38):

lim [ Opdp > 24 SV82I 5 TVlos2n (39)
Ly VN VN
Put by simplicity A; kx(w) := —log™ |Br — aislw for w € S5, so
)\i k(w)
O (w) = k)
)= TR
Then we have: Mer(@)
9 _ ik w
+() h(Br) "

where Ay == 1— ) < land A — 1. By Lemma 4.2 from {Aikﬁk} we can extract a subsequence

__ L
L+h(By

{A#kjekj } uniformly convergent to a function 6 on S\ U, where u(U) = 0. We extend 0 on the whole

15



S by putting )y = 0. Since on a set of finite measure the uniform convergence implies the L
convergence, we can write:

1 1
Odp = Odp = i — 0. dp = li — 0O dp =
/S " /S\U = O = i /A by i

(40)
- (_lim i) (_lim /ekjdu> > g4 IVlog2n
Ay, ) U N
Consider a positive real number C such that
7+/log 2n
Cu(S) < / Odu — (2 + 7)
s VN
and define the set
T:={weS:0w)<C}.
Note that T contains the previously introduced U. We obtain the following chain of inequalities:
7+/log2n
Odp < Cu(T) < Cu(S </9du— (2—1—7)
[ zcv =i« e (- 5
which gives
/ fdu > 2+ V10821
S\T VN
Now we define the function § : S — R such that
- 0 if T
9(w):{ (w) i wet.S'\
0 otherwise
Clearly f(w) > C for any w € S\ T and moreover
/9du:/ Oy > 2+ (V10820
s S\T VN
We can choose 7 €]0, 1] such that
- 7v/log 2n
YOdp > 2 + ————. 41
/. VN ()

We want to show that the function 'yé satisfies the hypotheses of Theorem 3.9. Choose d € Rs¢ such
that

0<do<(1I—mv)C
so that for any w € S\ T we have R X

YO(w) < f(w) — 4.
Denote by {0} the previously extracted subsequence that converges uniformly to 6 on S\ T. We
can find a positive integer M such that if m > M the following chain of inequalities holds for any
weS\T:
—log™ [Bm — ailw

h(Bum) + log (42N! e, H(ai)%’”)

We choose 3 := (,8(1), RN ﬂ(N)) in the set {fm }m>n with the following properties:

0 < Y0(w) < O(w) — 6 < O (w) <

(42)

e The elements 8 are separated by big enough gaps, so that the matrix T(B) satisfies the h-gap
condition.

e The elements 39) are chosen in a way that |3Y) —a;|, < 1foranyi=1,...,nand any w € S\T.

Note that this is possible because we can iterate n-times Lemma 4.2 starting with the sequence
—log™ [Bj—a;|w
h(B;)
converges uniformly almost everywhere to a function bounded from below by a positive number.

In this way inequality (42) ensures that 76 is column bounding.

{Bm} and extracting at each step i = 1,...,n a sequence {3;} such that w

Finally we can apply Theorem 3.9 for 'yé to get:

7+/log 2n
VN

which contradicts inequality (41). O

/wédu<2+
S

Now we show that Theorem 0.2 can be immediately recovered from Theorem (A).
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Proposition 4.3. Theorem (A) implies Theorem 0.2.

Proof. Let K be the Galois closure of k(a, ..., an) over k and consider the adelic curve X = (K, Q, )
naturally lying over (k,Vy). The strong p-equicontinuity condition trivially holds on X since all
singletons of ) are measurable and infy,eq p({w}) > 0. For any v; of Theorem 0.2 consider the set

Sii={weQ:wextends v;} = {wi;: j=1,...,7(i)} fori=1,...,n
The set S; are orbits under the action of Gal(K/k) on Q. For each i,j there is a;; € K such that
18— aijlwz‘j =8 —ailo,, VBEEK

Now we apply Theorem (A) on the set S = U, partitioned along the fibers of the map w;; — a;;.
Hence we get the following inequality

S [t 18 asluydu(e) > 2+ 2)he(d).
i5 Y {wis}
Note that the summation over i and j doesn’t reflect the partition. But

Z/{ }log_ 1B = gl dpp(w) = > log™ |8 — aijlwy; n({wis }) =
1,5 Y {wij ij

= Z <log 1B — ailv, ZM(MMD) = Zlog* 18— ailv,;

Where the last equality follows from [Neu99, Ch. II, Corollary 8.4]:

(i) O Ky, ¢ o]
> ) = -y o it
Jj=1 j=1

5 Roth’s theorem for adelic curves (B)

We weaken Definition 4.1 by requiring the “equicontinuity property” outside from sets of arbitrary
small measure:

Definition 5.1. A proper adelic curve X = (K, Q, ) satisfies the p-equicontinuity condition if for any
measurable set S C 2 of finite measure and any real numbers €, > 0 there exists a finite measurable
cover C1,...,Cm of S satisfying the following conditions. For all § € K* there exists a measurable
set Ug C Qoo such that u(Ug) < § and

|—1og™ |Blw +log™ [Blu| < eh(B), Vw,w' €C;\Us, Vj=1,.

In [Voj21, Proposition 8.9] it is shown that arithmetic function fields satisfy the p-equicontinuity
condition.

Definition 5.2. A proper adelic curve X = (K, Q, ) satisfies the uniform integrability condition if
for any € > 0 there exists § > 0 such that if ' C Q is a measurable subset satisfying u(7T) < J, then

/T —log™ |Bludp(w) < chz(B), VA eK*.

Vojta shows that arithmetic function fields satisfy the uniform integrability condition in [Voj21,
Lemma 8.8]. The following lemma provides a key step in our proof:

Lemma 5.3. Let X = (K, Q, ¢) be a proper adelic curve satisfying the p-equicontinuity condition and
the uniform integrability condition. Assume that Theorem (B) doesn’t hold for certain S, au,...,an €
K, €0 € Rso and ¢ € R. Let N > 0 an integer, € €]0,e0[, and ro,r1 > 1 two real numbers. Then
there exist BV, ..., BN € K satisfying the following conditions:

(1) n(BY) > ro

(k)
(2) % >ry forany k=2,...,N.
(3) There is a partition S = Sy U...U S, such that:

lOg |ﬁ (k) ailw
Z/S 1SRy ( h(3®) ) dp(w) >2+¢€
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Proof. The rather technical proof can be found in [Voj21, Proposition 8.12] for arithmetic function
fields, and it can be repeated line by line for our case. The proof uses [Voj21, Lemmas 8.10, 8.11],
that in turn rely on 3 assumptions denoted in [Voj21] by (i), (ii), (iii). Vojta needs to show that such
assumptions are satisfied in his case, and the proofs are quite involved. On the other hand, we now
explain why the assumptions hold immediately in our setting: assumption (i) follows by the integral
Liouville inequality (see Proposition 1.13(6)) if we put = = {Br}, ¢ = n, Ag,,; = —log™ |o; — Bi|
and cg = log2 + max; h(a;) for 5 = 1,...,n. Assumption (ii) is the p-equicontinuity condition.
Assumption (iii) is the uniform integrability condition.

Finally, note that in the statement of [Voj21, Proposition 8.12] the condition (1) is not explicitly
mentioned as a consequence of the hypotheses, but it can be easily deduced from the proof. O

Proof of theorem (B). When n = 1, from Proposition 1.13(6) we deduce that any approximant
[ such that
log2 + h(a1) + ¢
h Ve )T E
(p) > 2L

satisfies the desired inequality.

Fix n > 2. Assume by contradiction that the theorem is false for some €9 > 0 and that the
counterexample is given by a sequence of approximants {fx} such that h(8r) — +oco. We apply
Lemma 5.3; so for any ro,r1 > 1 and € < g¢ there exist 8, ..., 3N) € {B,,} satisfying the properties

(1)-(3). Consider the matrix constructed with the vector 8 = (81, ..., BM):
a1 a1 e a1
a2 a2 e a2
T(B) =
on  n ... Qp

Fe S 1 A 1S0)

Pick a constant:

L > log (4“’ []H(a) 25’)

i=1
We are ready to construct a function 6 € Ll(S, u) which will give the desired contradiction. We
define it as a piecewise function by putting for any w € S;:

—log™ |B(k> — o min —log™ |B(k) — Qilw

L+h(B®) Tk h(B*))

0|s; (w) = mkin Ag

where A, =1 — Let’s fix the set:

L
L+h(pR)
Sii={wes,;: 1B% — il <1, fork=1,...,N}

and put S = U, S;; note that 0|s\g = 0. We can choose R(BMPY > L > N > 21%1log2n in a way
that we can assume:

o> 2 n 7+/log 2n
Al Al\/ﬁ

By using property (3) of Lemma 5.3 and (43) we get:

= = . —log™ |8 — .,
/g&d,u /Sedu ;/gie\sldu> Ali;/& min ES) dp(w) >

7+/log 2n
VN

—2>0 (43)

> A1 (2+¢e) >2+ (44)

Now we want to show that we can apply Theorem 3.9.

e T(PB) satisfies the h-gap condition since we can choose the B%*) such that the heights h(ﬁ(k>) are
separated enough by property (2) of Lemma 5.3.

e Since |B(k> — ailw < 1 for we S;, the function 0 is column bounding for T(3) on S. Indeed for
any k=1,...,N and w € S; we have that:
—log™ [ — ail., —log™ |B™ — ails

O(w) <
W s —ThEmy S log (42Nz -, H(ai)ZTN!) +h(B®)
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Therefore we can apply Theorem 3.9 to conclude that:

/0du< g4 TViog2n
$ VN

which contradicts inequality (44).
(]

Note that in the proofs of Theorems (A) and (B) we didn’t assume Northcott property for our
adelic curve.

Example 5.4. Counsider the adelic curve X = (Q, £2,id) naturally obtained from the field K = Q
as in Example (1.4). We prove that the adelic curve X = (Q,(,id) doesn’t satisfy the strong u-
equicontinuity condition by showing that the generalised Roth’s theorem doesn’t hold.

The Thue equation X* — 2Y® = 1 has infinitely many solutions (zx,yx) = (\3/2k3 + l,k) for
k = 1,2,... in the algebraic integers. Note that by a theorem of Mahler such solutions cannot be
contained in a number field (see for instance [Zan09, Theorem 3.12]). Consider now the approximants

Br =2k = 3/2+ 1%3 for a = /2. First of all notice that

Yk
N

whereas by using the identity ¢Z 4 (3 + 1 = 0 where (3 is a primitive cubic root of the unity we obtain
the following equality for the euclidean absolute value:

Tk — \3/§Z/lc ’ mi - 21/1%
—log|Bx —a|=—log| ————| = —1o =
g |6k | & k & k(zk — (s \E'/iyk)(xk — CB? \z"/iyk)

zlogk—i—log’xk —C3\3/§yk‘ —|—10g‘xk —Cg%yk’ =3logk+ O(1)

With the same strategy employed in the proof of Proposition 4.3 it is easy to show that these
calculations give a counterexample to Theorem (A) for the adelic curve X. Hence we conclude that
X cannot satisfy the strong p-equicontinuity condition.

Appendices

A Construction of the interpolating polynomial

In this appendix we will sketch the construction of the interpolating polynomial § of section 2. For
all the details the reader can check [Cor97].

We employ the same notations of section 2. We are going to construct a complicated matrix
A(X) depending on the following parameters: s,t1,...,tn € R, with 0 < s <1 and 0 < tp < % for

h =1,...,n. The columns of the matrix are indexed by a € Gn; the rows are indexed by ¢, € G,
(for any h = 1,...,n) and moreover we put ¢,4+1 € Gs. The order on multi-indices is the lexicographic
one.
(i)o ™"
AX) = (45)
(‘ a )X‘l*in-f—l
Tn+1 ip,a

Note that A(X) has #(Gs) + >, #(G,,) rows and #(Gn) = [[,_,dr + 1] columns, and moreover
all the elements of the last #(Gs) rows are monomials. Clearly we can always choose the parameters
Syt1,...,tn € Rin order to obtain a matrix A(X) with more rows than columns. Let’s see an explicit
condition that tells us when this can be achieved: the number of rows is greater than the number of
columns if . .
#(Gs) + Y #(Gu,) > [[Ldn +11,
h=1 h=1

therefore thanks to Lemma 2.2, for di,...,dy very big, it is enough to have the following conditions
on volumes:

V(s) + i V(tn) > 1. (46)
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The volumes V(s), V(t1), ...,V (tn) heavily determine the algebraic properties of the matrix A(X),
in fact we will now present a stronger condition on the quantity V(s) + > ;_, V(¢1) ensuring that
A(X) has maximal rank.

Proposition A.1. Let di,...,dn be big enough and let di > d2 > ... > dn. Moreover assume that
o #£aP Vi=1,...N, Vhk=1,...,n, h#k.
If for s,ti,...,tn € R, with0 < s <1 and 0 <ty < % we have that
V(s)—f—zn:V(th) > Jﬁl <1+(n— 1) i di) (47)
h=1 =1 i=j+1 d;
then, for any B = (BY, 89, ..., BN e KV such that
B9 #£aP Vji=1,...N, Vh=1,...,n,,
the rank of A(B) is mazimal and equal to the number of columns.

Proof. See [Cor97, Proposition 2.1] and notice that it uses a version of Dyson’s lemma for polynomials

in many variables proved in [EV84]. O
One can always assume that the parameters s, t1,...,t, are chosen in a way that we always get
n
(14N <V(s)+ D> V(ta) <1+42Nn (48)
h=1

It is not difficult to see (check [Cor97, page 159]) that equation (48) implies (47). Therefore thanks
to Proposition A.1 we can extract from A(X) a square submatrix M (X) of dimension

n

ri=#(Gn) = []ldn + 1],

h=1

which is the number of columns of A(X), such that M (X) has maximal rank for any 8 componentwise
different from any ayj. Moreover one can choose M (X) in a way that contains the last #(Gs) rows
of A(X), since they are linearly independent for any choice of 8 € KV. The polynomial §(X) is
the determinant of the matrix M (X). At this point all the arguments used in [Cor97] to prove the
bounds about § can be applied verbatim in our setting with the only difference that in order to
estimate hx(J) one has to take the integral over Q instead of the summation over all places.
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