Sheet 1: Review of normed vector spaces and linear transformations

March 17, 2024

1) Two norms $\|\cdot\|$ and $\|\cdot\|^{\prime}$ on a real vector space X are said equivalent if there exists $m, M \in \mathbb{R}_{>0}$ such that

$$
m\|x\| \leq\|x\|^{\prime} \leq M\|x\|, \quad \forall x \in X
$$

Show that if X is finite dimensional then any two norms are equivalent.
[Hint: show that the equivalence of norms is actually an equivalence relation. So it is enough to show that any norm $\|\cdot\|$ is equivalent to the euclidean norm. The inequality \leq follows by the axioms. Finally the real number m can be obtained as the minimum value attained by $\|\cdot\|$ on the euclidean unit sphere]
2) Let X_{1}, \ldots, X_{n}, Y be finite dimensional normed real vector spaces. Show that any multilinear transformation $L: X_{1} \times \ldots \times X_{n} \rightarrow Y$ is bounded.
[Hint: first prove the claim using on each vector space the norm defined by summing the absolute values of the components with respct to a choice of a basis. Then use the previous exercise to conclude.]
3) Let $\mathbb{P}[x]$ be the vector space of polynomials in the variable x with real coefficients. Endow $\mathbb{P}[x]$ with the following inner product

$$
\langle p(x), q(x)\rangle:=\int_{0}^{1} p(x) q(x) d x .
$$

Calculate the norm of the linear transformation of $\mathbb{P}[x]$ given by $m_{x}: p(x) \mapsto x p(x)$.
4) Let $T: X \rightarrow Y$ be a bounded linear transformation between normed real vector spaces. Assume that there is a constant $C>0$ such that

$$
\|T x\| \geq C\|x\| \quad \forall x \in X
$$

Show that the set theoretical inverse transformation $T^{-1}: Y \rightarrow X$ exists and moreover show that it is linear and bounded.
5) Consider the space $C^{\infty}[0,1]$ of smooth functions (with domain $[0,1]$ and codomain \mathbb{R}) endowed with the following norm:

$$
\|f\|:=\sup _{x \in[0,1]} f(x) .
$$

Is the linear transformation of $C^{\infty}[0,1]$ given by $f \mapsto \frac{d f}{d x}$ a bounded linear transformation?

