Sheet 2: differentiable curves

March 25, 2024

1) Let $\gamma:[a, b] \rightarrow \mathbb{R}^{3}$ be a regular curve which is also simple (i.e. $\gamma\left(t_{1}\right) \neq \gamma\left(t_{2}\right)$ for any $a<t_{1}<t_{2}<b$ and $\left.\gamma(a), \gamma(b) \notin \gamma(] a, b[)\right)$.
(a) Show that there exists an equivalent curve $\widetilde{\gamma}: I \rightarrow \mathbb{R}^{3} s \mapsto \widetilde{\gamma}(s)$ with the following properties: for each point p the support of γ then $p=\widetilde{\gamma}(s)$ where s is the arc length of γ between $\gamma(a)$ and p. Viceversa given $s \in I$ there exists a unique point p in the support of γ such that the arc length between $\gamma(a)$ and p is exactly s.
(b) Show that for the curve $\widetilde{\gamma}$ constructed in (a) it holds that $\left\|\frac{d \tilde{\gamma}}{d s}\right\|=1$. (In other words the velocity vector of $\widetilde{\gamma}$ is always unitary).
(c) Compute the curve $\widetilde{\gamma}$ described in (a) for

$$
\begin{aligned}
\gamma:[0,2 \pi] & \rightarrow \mathbb{R}^{3} \\
t & \mapsto(r \cos t, r \sin t, c t), \quad \text { for } r, c \in \mathbb{R}_{>0}
\end{aligned}
$$

2) Let $\gamma:[a, b] \rightarrow \mathbb{R}^{3}$ be a regular curve and let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a differentiable function. Define the derivative of f along γ in the following way:

$$
\begin{aligned}
d f_{\left.\right|_{\gamma}}: \mathbb{R} & \rightarrow \mathbb{R} \\
t & \mapsto\left\langle\left.\nabla f\right|_{\gamma(t)}, \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}\right\rangle
\end{aligned}
$$

where ∇f is the gradient of f and \langle,$\rangle denotes the usual scalar product in \mathbb{R}^{3}$. Show that if f is constant along the curve γ, then $d f_{\left.\right|_{\gamma}}(t)=0$ for all $t \in[a, b]$.
3) Let $\gamma:[a, b] \rightarrow \mathbb{R}^{2}$ be a $C^{2}[a, b]$ curve. Consider the polar change of coordinates in the real plane defined in the following way:

$$
\begin{aligned}
\mathbb{R}_{\geq 0} \times[0,2 \pi[& \rightarrow \mathbb{R}^{2} \\
(\rho, \theta) & \mapsto(\rho \cos \theta, \rho \sin \theta)
\end{aligned}
$$

and denote by $\widetilde{\gamma}:[a, b] \rightarrow \mathbb{R}^{2}, t \mapsto(\rho(t) \cos \theta(t), \rho(t) \sin \theta(t))$ the above curve expressed after such a change of coordinates. Moreover define the following maps $\mathbf{u}, \mathbf{v}:[a, b] \rightarrow \mathbb{R}^{2}$:

$$
\begin{gathered}
\mathbf{u}(t)=(\cos \theta(t), \sin \theta(t)) \\
\mathbf{v}(t)=(-\sin \theta(t), \cos \theta(t))
\end{gathered}
$$

Show that:

$$
\dot{\gamma}(t)=\dot{\rho}(t) \mathbf{u}(t)+\rho(t) \dot{\theta}(t) \mathbf{v}(t) .
$$

