Sheet 2: differentiable curves

March 25, 2024

1) Let $\gamma : [a, b] \to \mathbb{R}^3$ be a regular curve which is also simple (i.e. $\gamma(t_1) \neq \gamma(t_2)$ for any $a < t_1 < t_2 < b$ and $\gamma(a), \gamma(b) \notin \gamma([a, b[))$.

- (a) Show that there exists an equivalent curve $\tilde{\gamma} : I \to \mathbb{R}^3 \ s \mapsto \tilde{\gamma}(s)$ with the following properties: for each point p the support of γ then $p = \tilde{\gamma}(s)$ where s is the arc length of γ between $\gamma(a)$ and p. Viceversa given $s \in I$ there exists a unique point p in the support of γ such that the arc length between $\gamma(a)$ and p is exactly s.
- (b) Show that for the curve $\tilde{\gamma}$ constructed in (a) it holds that $\left\|\frac{d\tilde{\gamma}}{ds}\right\| = 1$. (In other words the velocity vector of $\tilde{\gamma}$ is always unitary).
- (c) Compute the curve $\tilde{\gamma}$ described in (a) for

$$\begin{aligned} \gamma : [0, 2\pi] &\to \mathbb{R}^3 \\ t &\mapsto (r \cos t, r \sin t, ct), \quad \text{for } r, c \in \mathbb{R}_{>0}. \end{aligned}$$

2) Let $\gamma : [a, b] \to \mathbb{R}^3$ be a regular curve and let $f : \mathbb{R}^3 \to \mathbb{R}$ be a differentiable function. Define the *derivative of* f along γ in the following way:

$$df_{|\gamma} : \mathbb{R} \to \mathbb{R}$$
$$t \mapsto \left\langle \nabla f|_{\gamma(t)}, \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|} \right\rangle$$

where ∇f is the gradient of f and \langle , \rangle denotes the usual scalar product in \mathbb{R}^3 . Show that if f is constant along the curve γ , then $df_{|\gamma}(t) = 0$ for all $t \in [a, b]$.

3) Let $\gamma : [a, b] \to \mathbb{R}^2$ be a $C^2[a, b]$ curve. Consider the polar change of coordinates in the real plane defined in the following way:

$$\mathbb{R}_{\geq 0} \times \begin{bmatrix} 0, 2\pi \end{bmatrix} \to \mathbb{R}^2 (\rho, \theta) \mapsto (\rho \cos \theta, \rho \sin \theta)$$

and denote by $\tilde{\gamma}: [a, b] \to \mathbb{R}^2, t \mapsto (\rho(t) \cos \theta(t), \rho(t) \sin \theta(t))$ the above curve expressed after such a change of coordinates. Moreover define the following maps $\mathbf{u}, \mathbf{v}: [a, b] \to \mathbb{R}^2$:

$$\mathbf{u}(t) = (\cos \theta(t), \sin \theta(t))$$
$$\mathbf{v}(t) = (-\sin \theta(t), \cos \theta(t))$$

Show that:

$$\dot{\gamma}(t) = \dot{\rho}(t)\mathbf{u}(t) + \rho(t)\dot{\theta}(t)\mathbf{v}(t)$$