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1 “Good” approximants

The main goal of classical Diophantine approximation is to estimate the number of “good” approximants
of the type r

s ∈ Q, where r and s are coprime integers1, of a given number α ∈ R. Since Q is dense in
R, it is obviously possible to choose r, s ∈ Z in a way that the error term |α − r

s | is arbitrarily small,
therefore we have to explain what it means for an approximant to be “good” in this theory. First of all
we observe that the size of the error |α− r

s | can be controlled by the denominator s in the following way:
choose any integer s, then the set 1

|s|Z subdivides the real line into consecutive intervals of length 1
|s| .

The real number α is contained in one of such intervals that we denote by Iα, so the distance between
α and the closest extremum of Iα is at most 1

2|s| . This reasoning shows that for any choice of s we can

always find an approximant r
s such that |α− r

s | ≤
1

2|s| <
1
|s| .

Figure 1: Partition of the real line by 1
3Z.

Notice that in the above naive (and non-effective) process, the error term is bounded by a linear
expression in |s|−1. Roughly speaking a “good” approximant of α will be a rational that improves such
a trivial error/denominator relation and hence satisfies the fundamental inequality:∣∣∣α− r

s

∣∣∣ < |s|−t (1)

with t ∈ R>1. Clearly the value of exponent t tells us how good is the rational approximation, in fact a
big value of t means that we are able to shrink the error term by using a relatively small denominator (i.e.
a simpler number). For instance π can be approximated by the value 22

7 and notice that 22
7 − π < 7−3,

so we are in presence of a “good” approximant. The fundamental question of the whole theory is the
following: is the existence of good approximants of α just a result of chance or it depends on the nature of
α? Consider for instance the case of π, is 22

7 just a “lucky” approximant? Intuitively, if for a fixed positive
real number t Equation (1) has infinitely many solutions r

s ∈ Q, this is a sign that the approximation of α
with exponent t is not just a matter of luck. We will see that the algebraic properties (in terms of Galois
theory) of α heavily control the quality of the rational approximations of α i.e. the metric properties of
rationals around α.

Moreover we want to stress that the theory of Diophantine approximation is deeply connected to the
problem of determining the finiteness for the solutions of Diophantine equations.

1Classically a rational approximant is denoted with the symbol p
q

but here we adopt a different choice of letters since

we want to keep p and q for prime numbers

1



2 Approximation exponent

An intrinsic measure of the “approximability” of a real number α is formalised in the following definition:

Definition 2.1. Let α ∈ R and put:

Tα :=
{
t ∈ R : ∃ infinitely many coprime couples (r, s) ∈ Z2 such that 0 <

∣∣∣α− r

s

∣∣∣ < |s|−t
}
.

The approximation exponent of α ∈ R is:

τ(α) := sup Tα .

Notice that τ(α) may as well be +∞, and this case will be explained soon. But assume for a moment
that τ(α) ∈ R, then Definition 2.1 says that for any ε > 0 the real number α has infinitely many rational
approximations that satify Equation (1) with an exponent t strictly bigger than τ(α)− ε. Moreover, an
inequality τ(α) ≤ C, with C ∈ R, is equivalent to saying that for any ε > 0 Equation (1) with exponent
t = C + ε is satisfied only by finitely many rationals (“lucky” approximants).

The naive argument explained in the introduction of this chapter about partitioning the real line into
consecutive intervals of length |s|−1 says that 1 ∈ Tα for any α ∈ R. Therefore τ(α) ≥ 1 for any α ∈ R.
As one can expect, rational numbers are badly approximable by rationals:

Proposition 2.2. If α ∈ Q then τ(α) = 1.

Proof. We want to prove that if α ∈ Z then τ(α) ≤ 1 so it is enough to show that for any ε > 0 the
coprime couples (r, s) ∈ Z2 satisfying:

0 <
∣∣∣α− r

s

∣∣∣ < |s|−1−ε (2)

are finitely many. We can assume that
∣∣α− r

s

∣∣ < 1 otherwise the set of solutions is empty i.e. we are in
the following situation

s(α− 1) < r < s(α+ 1) (3)

Let’s write α = a
b , then since a

b ̸= r
s we can write:∣∣∣α− r

s

∣∣∣ = ∣∣∣a
b
− r

s

∣∣∣ = |as− rb|
|bs|

≥ 1

|b||s|
(4)

We point out that the last inequality of Equation (4) follows from the fact that |as − rb| is a strictly

positive integer, so it must be at least 1. By comparing Equation (2) with Equation (4) we find |s| < |b| 1ε .
This means that there are finitely many solutions for the denominators s. moreover by Equation (3) for
any such denominator we have only finitely possibilities for the numerators r.

The general study of τ(α) for α ∈ R \Q is very complicated since it turns out that this value depends
on the nature of α. We start with the study some classical bounds for τ(α).

Lemma 2.3 (Dirichlet, 1840). Let α ∈ R and let Q ∈ N>0. Then there exists two coprime integers r, s
with 0 < s ≤ Q such that ∣∣∣α− r

s

∣∣∣ ≤ 1

s(Q+ 1)

Proof. We find two integers r and s, not necessarily coprime, that satisfy the lemma; one clearly gets
claim after simplifying the common factors.

For any number x ∈ R we denote by {x} the fractional part of x, i.e. {x} := x − ⌊x⌋. Consider the
Q + 1 numbers 0, {α}, {2α} , . . . , {Qα} ∈ [0, 1[ and moreover divide [0, 1[ into Q + 1 disjoint intervals

Ij =
[

j
Q+1 ,

j+1
Q+1

[
for j = 0, . . . , Q. At this point one of the following mutually exclusive conditions is

verified:

(i) Any interval Ij contains exactly one number {kα} for j, k = 0, . . . Q, so in particular there exists
an integer 0 < s ≤ Q such that

Q

Q+ 1
≤ {sα} < 1 (5)
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which is equivalent to

−1 < ⌊sα⌋ − sα ≤ − Q

Q+ 1

By adding 1 we get

0 < 1 + ⌊sα⌋ − sα ≤ 1

Q+ 1

which implies the thesis if we put r := 1 + ⌊sα⌋.

(ii) There exist two integers a, b satisfying 0 ≤ a < b ≤ Q and |{bα} − {aα}| < 1
Q+1 . But the latter

inequality is equivalent to

|(b− a)α− (⌊bα⌋ − ⌊aα⌋)| < 1

Q+ 1

Which the claim we wanted for s := b− a and r := ⌊bα⌋ − ⌊aα⌋.

Remark 2.4. Note that the proof of Dirichlet lemma is nothing more than a clever application of the
pigeonhole principle.

Proposition 2.5. Let α ∈ R \Q, then 2 ∈ Tα. So in particular τ(α) ≥ 2.

Proof. Assume by contradiction that all the (distinct) solutions of the inequality

0 <
∣∣∣α− r

s

∣∣∣ < |s|−2 (6)

are the coprime couples (r1, s1), . . . , (rn, sn). Put δ := mini |siα− ri| and notice that δ > 0 since α ∈ R\Q.
Choose any integer Q > 1

δ , then by Lemma 2.3 we can find two coprime integers r, s with 0 < s ≤ Q such
that: ∣∣∣α− r

s

∣∣∣ ≤ 1

s(Q+ 1)
<

1

sQ
≤ 1

s2

We have found a solution (r, s) of Equation (6) that also satisfies |sα− r| < 1
Q < δ. But by the definition

of δ this implies that (r, s) is different from any of the (ri, si).

We shall now see how the approximation exponent can be bounded from above for algebraic numbers.

Theorem 2.6 (Liouville, 1844). Let α ∈ R be an algebraic number of degree d over Q, then there exists
a real number c := c(α) > 0 such that for any r, s ∈ Z with s > 0 and α ̸= r

s it holds that∣∣∣α− r

s

∣∣∣ ≥ c

sd

Proof. If
∣∣α− r

s

∣∣ > 1 then the theorem holds for c = 1, therefore from now on we can safely assume that∣∣α− r
s

∣∣ ≤ 1. Let f(X) = a0 + a1X + . . . + adX
d ∈ Z[X] be a minimal polynomial of α. Since f(X) is

irreducible over Q it cannot have rational roots, in particular f
(
r
s

)
̸= 0. Then:

∣∣∣f (r
s

)∣∣∣ = ∣∣a0sd + a1rs
d−1 + . . .+ adr

d
∣∣

sd
≥ 1

sd
(7)

where the last inequality follows from the fact that the numerator is a strictly positive integer. By the
mean value theorem we have that:∣∣∣f (r

s

)∣∣∣ = ∣∣∣f(α)− f
(r
s

)∣∣∣ = |f ′(β)|
∣∣∣α− r

s

∣∣∣ , for α ∈ R such that |α− β| <
∣∣∣α− r

s

∣∣∣ ≤ 1

But clearly |f ′(β)| is bounded from above by the number

M := max{|f ′(x)| : x ∈ [α− 1, α+ 1]}

so by Equation (7) we obtain

M
∣∣∣α− r

s

∣∣∣ ≥ ∣∣∣f (r
s

)∣∣∣ ≥ 1

sd

Therefore the theorem is proved after setting c := min{1, 1
M }.

3



Remark 2.7. The whole proof of Liouville’s theorem is based on the following very simple fact: since
f is a polynomial with coefficients in Z, when r

s is close to α (but not equal) then f
(
r
s

)
cannot be “too

close” to 0 = f(α). Indeed the distance between f
(
r
s

)
and 0 is bounded from below by 1

sd
.

Corollary 2.8. Let α ∈ R be an algebraic number of degree d over Q, then τ(α) ≤ d.

Proof. We show that for any ε > 0 the we have only finitely many coprime couples (r, s) ∈ Z2 such that∣∣∣α− r

s

∣∣∣ < |s|−d−ε (8)

Let c = c(α) be the constant given by Liouville’s theorem. Assume by contradiction that one can find a
solution r

s of Equation (8) with s arbitrarily large, so that cs > 1. Then 1
sε < 1

s < c and∣∣∣α− r

s

∣∣∣ < s−d−ε <
c

sd

contradicts Liouville’s theorem.

Thanks to Liouville’s theorem it is possible to explicitly construct transcendental numbers, in fact it
is enough to find some α ∈ R such that τ(α) = +∞. Such a problem is discussed below:

Definition 2.9. A Liouville number is a real number α such that for any m ∈ N>0 there exists a pair of
coprime integers (r, s) ∈ Z2 with s > 1 such that:∣∣∣α− r

s

∣∣∣ < s−m (9)

It is immediate to see that a Liouville number cannot be rational, because if it was α = a
b then for any

approximant we would have a lower bound like in Equation (4) that compared with Equation (9) gives
s < |b|m−1 for any m ∈ N>0, so in particular s < 1, i.e. a contradiction. We now show that Liouviulle
numbers are exactly those reals having infinite approximation exponent.

Proposition 2.10. α ∈ R is a Liouville number if and only if τ(α) = +∞.

Proof. If τ(α) = +∞ then obviously α is a Lioville number. Viceversa assume by contradiction that α is
a Liouville number such that τ(α) < +∞ and consider σ := ⌈τ(α)⌉+ 1. The inequality∣∣∣α− r

s

∣∣∣ < |s|−σ (10)

has finitely many coprime solutions (r, s) and the set of solutions is actually nonempty since∣∣∣∣α− ⌊α⌋
1

∣∣∣∣ < 1 = 1−σ .

Therefore, amongst all solutions of Equation (10) we consider the one with biggest denominator s. On
the other hand, since α is a Liouville number we have a sequence of coprime couples {(rn, sn)} such that∣∣∣∣α− rn

sn

∣∣∣∣ < 1

snn

In the next step we want to show that sn → +∞. Assume by contradiction that {sn} is bounded by
M > 0, then ∣∣∣∣M !α− M ! rn

sn

∣∣∣∣ ≥ min{M !α− ⌊M !α⌋, ⌈M !α⌉ −M !α} > 0

since M ! rn
sn

∈ Z (note that sn is a factor of M ! because sn ≤ M) and α /∈ Z. But on the other hand since
s > 1:

0 ≤ lim
n→+∞

1

snn
≤ lim

n→+∞

1

2n
= 0 .

We get the contradiction when we take the limit for n → +∞ of
∣∣∣M !α− M ! rn

sn

∣∣∣. Hence, there exists some

N > σ such that sN > s. But ∣∣∣∣ξ − rN
sN

∣∣∣∣ < 1

sNN
<

1

sN
<

1

sσ

Contradicting the maximality of the denominator s.
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It is relatively easy to construct Liouville numbers. Fix an integer b ≥ 2 and a sequence of integers
{ak}k≥1 with ak ∈ {0, . . . , b−1} and ak ̸= 0 for infinitely many k. We are going to show that the number

ℓ =

∞∑
k=1

ak
bk!

is a Liouville number. First of all notice that we have the following representation for ℓ in base b

ℓ = 0.a1a2000a3...

where the k!-th term of the expansion is ak, and the remaining terms are 0. Since the sequence {ak}
is not eventually 0, it follows that ℓ is not rational. Moreover for any m ∈ N>0 define sm := bm! and
rm := sm

∑m
k=1

ak

bk! , then

0 <

∣∣∣∣ℓ− rn
sn

∣∣∣∣ <
∣∣∣∣∣ℓ−

m∑
k=1

ak
bk!

∣∣∣∣∣ =
∞∑

m+1

ak
b(k!)

≤
∞∑

k=m+1

b− 1

bk!
<

∞∑
k=(m+1)!

b− 1

bk
=

b− 1

b(m+1)!

∞∑
k=0

1

bk
=

=
b− 1

b(m+1)!

b

b− 1
<

bm!

b(m+1)!
=

1

b(m+1)!−m!
=

1

b(m!)m
=

1

smm

From the above described construction it is also easy to deduce that the set of Liouville numbers is
uncountable.

The improvement of the upper bound of Corollary 2.8 has been object of a massive quest for several
years. Here a list of the successive sharpenings:

• Thue: τ(α) ≤ 1 + d
2

• Siegel: τ(α) ≤ 2
√
d

• Gelfond-Dyson: τ(α) ≤
√
2d

The definitive answer for the approximation exponent of an algebraic number was given in 1955 by Roth,
who was awarded the Fields medal because of it.

Theorem 2.11 (Roth). Let α ∈ R an algebraic number, then τ(α) = 2

Proof. See [Rot55].

An obviously equivalent, but more useful, formulation of Roth’s theorem is the following:

Theorem 2.12. Let α ∈ R be an algebraic number and let ε > 0 be a real number. Then there exists
a real constant C(α, ε) > 0 such that for every pair of coprime integers (r, s) with q > C(α, ε), it holds
that: ∣∣∣α− r

s

∣∣∣ > s−2−ε

We will discuss several generalisations of Theorem 2.12 and we will also describe the problem of finding
information about the finitely many solutions of the inequality

∣∣α− r
s

∣∣ ≤ s−2−ε.
The following table summarizes the properties of the approximation exponent that we have so far

unveiled. It is now clear why the approximation exponent is often called irrationality measure

Type of α Appr. exp.

Rational τ(α) = 1

Algebraic τ(α) = 2

Transcendental τ(α) ≥ 2

Liouville τ(α) = +∞
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What happens to the irrationality measure of transcendental numbers can be quite wild, but in [Bug08,
Theorem 2] it is shown that for any λ ∈]2,+∞[ there exists a real number β such that τ(β) = λ. Moreover,
from a set theoretic point of view it is not difficult to show that the subset of reals made of all the numbers
having approximation exponent > 2 has Lebeasgue measure equal to 0 (this result follows from Cantelli’s
lemma, see for instance [Bug12, Theorem E.3]). The exact value of the approximation exponent of some
specific transcendental numbers is an active area of research; for instance it is well known that τ(e) = 2
whereas for π the most accurate currently available bound is τ(π) ≤ 7, 103205334137 . . . (see [ZZ20]).

Remark 2.13. In this brief section we have studied Diophantine approximations based on Equation (1),
i.e. we compared the error with the powers of the approximants’ denominators. One can ask similar
questions but using more general functions Ψ(s) (of the denominators), instead of Ψ(s) = s−t (see for
instance [Bug04]).

3 A baby example: Pell’s equation over Q
Diophantine approximation is deeply linked to the problem of finding solution of Diophantine equations.
Here we highlight this relationship in the nontrivial case of Pell’s equation:

X2 − dY 2 = 1 , for d ∈ N>0 . (11)

Note that if d is a perfect square, i.e. d = m2 for m ∈ N>0, then the solutions (x, y) ∈ Z2 of the
equation 1 = X2− dY 2 = (X +mY )(X −mY ) are obviously just (±1, 0). The couples (±1, 0) are in any
case solutions of Equation (11) for any d ∈ N>0, and they will be called trivial solutions (of the Pell’s
equation). So, assume that d is not a perfect square; first of all it is useful to see Equation (11) in the
field Q(

√
d), so that we can write it as

1 =
(
X + Y

√
d
)(

X − Y
√
d
)
. (12)

If a non-trivial solution exists, then there exists also a solution with positive components; therefore assume
that (x, y) is a solution with x, y > 0. Then x =

√
1 + dy2 > y

√
d and by Equation (12) we obtain∣∣∣x−

√
d
∣∣∣ = 1

x+ y
√
d
<

1

2y
√
d
,

namely ∣∣∣∣xy −
√
d

∣∣∣∣ < 1

2y2
√
d
<

1

y2
(13)

In other words, a non-trivial solution of Pell’s equation (seen as a rational number) turns out to be a
good approximant of

√
d. The above argument shows how to get good approximants from some solutions

of a Diophantine equation, but the process can be reversed (in a non-effective way). In fact, in the next
theorem we will see that the existence of infinitely many good approximants of

√
d plays in a crucial role

in the proof that Pell’s equation has infinitely many integral solutions:

Theorem 3.1. If d ∈ N>0 is not a perfect square then Equation (11) has infinitely many solutions
(x, y) ∈ Z2.

Proof. By Proposition 2.5 there are infinitely many rationals x
y with y > 0 that satisfy Equation (13).

For them we have
∣∣∣x− y

√
d
∣∣∣ < y−1 < 1, so x < 1 + y

√
d. From these two inequalities we get:

∣∣x2 − dy2
∣∣ <

∣∣∣x+ y
√
d
∣∣∣

y
<

2y
√
d+ 1

y
≤ 2

√
d+ 1 (14)

Since d is not a perfect square x2 − dy2 is a nonzero integer, therefore from Equation (14) and the
pigeonhole principle we conclude that there is a nonzero integer M ∈ ]− 2

√
d− 1, 2

√
d+1[ such that the

equation
X2 − dY 2 = M

has infinitely many solutions (x, y) ∈ Z2 with y > 0. So far we have proved that a modification of Pell’s
equation (with M instead of 1) has infinitely many integral solutions.
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(Z/MZ)2 is a finite, so again by the pigeonhole principle there exist two elements xi + yi
√
d ∈ Z[

√
d]

for i = 1, 2, such that the following conditions are all verified:

y1 ̸= y2 ,

xi, yi > 0 ,

(xi + yi
√
d)(xi − yi

√
d) = M ,

x1 ≡ x2 (mod M) ,

y1 ≡ y2 (mod M) .

(15)

We can also assume that x1

y1
̸= x2

y2
otherwise from the identity M = X2 − dY 2 = Y 2

(
X2

Y 2 − d
)
we would

get y1 = y2. Let’s now write

(x1 + y1
√
d)(x2 − y2

√
d) = A+B

√
d ∈ Z[

√
d]

with A = x1x2 − dy1y2, B = x2y1 − x1y2. By the modular conditions of Equation (15) we get A ≡ 0
(mod M) and B ≡ 0 (mod M), i.e. A = MA1 and B = MB1 for A1, B1 ∈ Z. Moreover

A2
1 − dB2

1 =
1

M2

(
A2 − dB2

)
= 1 ,

so (A1, B1) is an integral solution of Pell’s equation. It is actually a nontrivial solution, in fact if B′ = 0,
then B = 0 i.e. x1

y1
= x2

y2
.

So far we proved that Pell’s equation admits a nontrivial integral solution; by simplicity let’s denote
it by (x, y). We now show that we can modify such solution to get infinitely many (distinct) integral
solutions (xn, yn) for n ∈ N>0. Let’s define xn and yn via the following formula:

xn + yn
√
d =

(
x+ y

√
d
)n

.

After applying the automorphism of Z[
√
d] induced by

√
d 7→ −

√
d we get also

xn − yn
√
d =

(
x− y

√
d
)n

.

Therefore:

x2
n − dy2n =

(
x+ y

√
d
)n (

x− y
√
d
)n

=
(
x2 − dy2

)n
= 1

The couples (xn, yn) are pairwise distinct, because otherwise x+ y
√
d would be a root of unity in Z[

√
d]

i.e. x+ y
√
d = ±1. But this is impossible since (x, y) is a nontrivial solution of Pell’s equation.

Remark 3.2. The proof of Theorem 3.1 is divided in three steps: first one uses the fact that 2 ∈ T√
d and

the pigeon principle to show that the modified Pell’s equation X2−dY 2 = M has infinitely many integral
solutions. Then, again by the pigeonhole principle one shows the existence of an integral nontrivial
solution of Pell’s equation. Finally, from such solution one generates a sequence of distinct integral
solutions.

Remark 3.3. We didn’t provide an explicit description for the integral solutions of Pell’s equation, but
this is actually well known for any number field K. Let d ∈ OK−{0}, then the set of solutions (x, y) ∈ O2

K

of the equation X2 − dY 2 = 1 is completely described in [Sch06].
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