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Abstract

We study two families of g-dimensional abelian varieties, induced by distinct rational maps defined
on a common variety A and mapping to two bases S1 and S2. Two non-torsion sections induce
birational fiberwise translations on A. We consider the action of a specific subset of the group
generated by these translations. Under the assumption that dimS1(= dimS2) ≤ g, we prove that
the points with finite orbit are contained in a proper Zariski closed subset. This subset is explicitly
described to a certain extent. Our results generalize a theorem of Corvaja, Tsimermann, and Zannier
to higher dimensions.

0 Introduction

In the context of algebraic dynamics, it is natural to study the distribution of special points under the
action of the automorphism group of an algebraic variety. Cantat and Dujardin, in [13, Theorem B],
establish that if X is a smooth projective surface defined over a number field and Γ ⊂ Aut(X) is a
subgroup satisfying certain properties, then the points of X(C) with finite Γ-orbit are contained in a
proper Zariski-closed subset of X. In [15, Theorem 1.1], Corvaja, Tsimerman, and Zannier improve upon
this result in the special case of a projective surface endowed with a double elliptic fibration. They
demonstrate that if Γ is the group generated by the two translations induced by the elliptic fibrations,
then the points with finite orbit under the action of a specific small subset of Γ lie on the union of
finitely many fibers of one of the two fibrations. Their proof employs tools from the theory of unlikely
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intersections, particularly leveraging the properties of the so-called Betti map. In this paper we generalize
[15, Theorem 1.1] to the case of projective varieties endowed with a double fibration in g-dimensional
abelian varieties over bases of dimension at most g.

General notations. We assume that all algebraic varieties and morphisms are defined over Q. An
algebraic point p of a variety X will be denoted simply as p ∈ X (or, occasionally, more explicitly as
p ∈ X(Q)). We do not make use of schematic points in this work. Furthermore, we denote by X(C) the
analytification of X, which naturally carries the structure of a complex manifold. The dimension of X
as a complex manifold is denoted by dimX.

In several proofs, we work with numerous positive real constants, typically denoted by variables such
as C, c0, c1, . . . Our convention is that these variables are local to the paper, meaning their values and
interpretations are valid only within the specific proof in which they appear, unless explicitly stated
otherwise.

This paper employs concepts from transcendental Diophantine problems, including o-minimal struc-
tures, definable sets, and definable families. For the foundational definitions and properties, we refer the
reader to the seminal works [44] and [43].

Additionally, when we write an inequality using the symbol ≫, we mean that the left-hand side (LHS)
is greater than or equal to the right-hand side (RHS) multiplied by a constant that is independent of the
variables involved in the inequality.

Definition 0.1. Let S be a non-singular, irreducible variety. A family of g-dimensional abelian varieties
is a proper flat morphism of finite type f : A → S with a section, where A is a non-singular irreducible
variety and the generic fiber is an abelian variety of dimension g over Q(S) (with a rational point). After
removing the singular fibers and their images we obtain a g-dimensional abelian scheme f : A → S (the
fiberwise group law extends uniquely to a global map that gives the structure of abelian scheme over S,
see [39, Theorem 6.14]).

The set of N -torsion points of a family of g-dimensional abelian varieties A is denoted by A[N ], and
moreover we put Ator =

⋃
N≥1 A[N ]. We assume the existence of a non-torsion section σ : S → A of f

(i.e. the image of σ is not contained in any A[N ]) and that Zσ is Zariski dense in A. We define the
following automorphism:

tσ : A(C) → A(C)
p 7→ p+ σ(f(p)).

Let Γσ be the group generated by tσ that acts naturally on A(C), for any p ∈ A(C) we are interested in
the orbit

Γσ(p) := {trσ(p) : r ∈ N} .

Clearly each orbit is contained in a single fiber of f , but it is important to study whether the locus F(1)

of points p ∈ A(C) such that Γσ(p) is finite can be confined in a subset lying over a proper closed subset
of the base. We recall that a torsion value of σ is an element of σ−1(Ator) and obviously Γσ(p) is finite
if and only if f(p) is a torsion value. Therefore, such study of F(1) can be reduced to the study of the
Zariski density of the torsion values of σ. But the last property depends on the values of dimS and g in
the following way: if dimS ≥ g then σ−1(Ator) is Zariski dense in S if and only if the rank of the Betti
map βσ is 2g (see [21, Theorem 1.3]). Note that [8, Proposition 2.1.1] shows that rankR βσ ≥ 2g implies
that σ−1(Ator) is dense in S(C) with respect to the analytic topology. On the other hand if dimS < g
then σ−1(Ator) is not Zariski dense in S. This is a special case of the relative Manin-Mumford conjecture
that has been recently proved in [21, Theorem 1.1].

We examine a variation of the aforementioned setting.

Definition 0.2. A double g-dimensional abelian rational fibration is the datum of two dominant rational
maps f1 : A 99K S1 and f2 : A 99K S2, such that A, S1 and S2 are non-singular and irreducible varieties,
and moreover the induced morphisms on the (maximal) loci where f1 and f2 are well defined induce
families of g-dimensional abelian varieties. In particular, for each of them the generic fiber is an abelian
variety over kS1

:= Q(S1) and kS2
:= Q(S2) respectively.

Note that dim(S1) = dim(S2). Additionally, we usually require that A, S1 and S2 are projective and
we denote with Fund(fi) the fundamental locus of fi, i.e. the proper closed subset on which the rational
map fi cannot be extended.
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Assumptions. In addition we impose the following rather standard conditions on these families:

1) The two abelian families are “distinct”, in the sense that their common fibers (if any) lie over a
proper Zariski closed subset E either of S1 or of S2. Let’s assume E ⊆ S1.

2) We consider i, j ∈ {1, 2} with i ̸= j. We assume that Fund(fj) is not horizontal with respect to fi
1.

Hence, the set Fund(fj) \ (Fund(f1) ∩ Fund(f2)) is contained in a closed subset f−1
i (W ) where W

is a proper Zariski closed subset of Si defined over Q. We fix a W as above and we call it Indi. As
a consequence, after removing from Si and A some suitable closed subset defined over Q, the maps
fi induce two families of abelian varieties over a quasi-projective base (we still have bad reduction).
Moreover, after removing the respective singular fibers and discriminant loci we obtain two abelian
schemes fi : Ai → Si. We assume the existence of non-torsion sections σi : Si → Ai of fi.

3) Zσi is Zariski dense in the generic fiber of Ai. Equivalently, the image of σi is not contained in
any subgroup-scheme of Ai.

The fiber of a point s ∈ Si(C) with respect to the morphism fi will be denoted by Ai,s and the
discriminant locus of fi is Singi = Si \ Si. Consider the two birational transformations ti of A(C) acting
by translation along the general fiber of fi and mapping the zero section to σi:

ti : A(C) 99K A(C)
p 7→ p+ σi(fi(p)).

We study the action of the subgroup Γσ1,σ2
:= ⟨t1, t2⟩ generated by t1 and t2 in the group of birational

transformations Bir(A(C)); in particular we want to confine the points with finite orbits. First of all,
since t1 and t2 are not defined everywhere on A(C) we have to be careful with the notion of orbit. For
p ∈ A(C) we put:

Γσ1,σ2(p) := {γ(p) : γ ∈ Γσ1,σ2 and γ is well defined at p} .

In fact, we shall focus on a subset of the orbit showing that already the points with finite orbits under
the action of a “small subset” of Γσ1,σ2

lie in a proper Zariski closed subset of A(C). This small subset
of Γσ1,σ2 will be precisely the following:

O = Oσ1,σ2
:= {tr11 ◦ tr22 : r1, r2 ∈ N} .

For any p ∈ A(C) we clearly have O(p) ⊆ Γσ1,σ2
(p) and moreover we define

F = F(2) := {p ∈ A(C) : O(p) is finite}.

Remark 0.3. Note that if p ∈ F then both f1(p) and f2(p) are torsion values for the relative sections,
and in particular p ∈ A(Q). In other words F is contained in the intersection between the f1-fibers and
the f2-fibers of the torsion values.

The case g = 1 has been already treated in [15, Theorem 1.1] where it is shown that F lies over finitely
many fibers of f2. The following theorem is our main result:

Theorem 0.4. Let f1 : A 99K S1 and f2 : A 99K S2 be a double g-dimensional abelian rational fibration
with A, S1 and S2 projective varieties. Moreover, assume that f1 and f2 satisfy the assumptions 1)− 4)
above. If dimS1 = dimS2 ≤ g, then there exist two proper Zariski closed subsets Z1 ⊂ S1 and Z2 ⊂ S2

such that
F \ (Fund(f1) ∩ Fund(f2)) ⊆ f−1

1 (Z1) ∪ f−1
2 (Z2) . (1)

Our result can be seen as a generalization of the relative Manin-Mumford conjecture for sections in
the following way: in the case of a single family of abelian varieties [21, Theorem 1.1] says that the
relative locus F(1) is not Zariski dense for dimS ≤ g − 1. On the other hand, in the case of two families
of abelian varieties with same base S, Theorem 0.4 implies that F(2) is not Zariski dense for dimS ≤ g.

Remark 0.5. If any of the sets σ−1
i (Ai,tor) is not Zariski dense then the theorem is obviously true thanks

to Remark 0.3. Therefore if dimS1 = dimS2 < g then Theorem 0.4 follows directly from [21, Theorem
1.1]. For the same reason, thanks to [21, Theorem 1.3] we can restrict ourselves to prove just the case:

2 dimS1 = 2dimS2 = 2g = rankR dβ1 = rankR dβ2 , (2)

1A subset W ⊂ A is said horizontal with respect to fi if fi(W ) is Zariski-dense in Si for i = 1, 2.
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where βi is the Betti map attached to the section σi. Observe that Equation (2) is crucial for the
application of the so called “height inequality” of [17, Theorem 1.6] that relates the projective height
of the base to the fiberwise Neron-Tate height. In our proof this result appears several times, and on
different abelian schemes, to ensure that the height of “most of” the torsion values can be uniformly
bounded. On the other hand, it is known that the height inequality fails in general without assumptions
on the rank of the Betti map. See also [51, Theorem 5.3.5] for a generalization of height inequality which
nevertheless requires the same hypotheses in the case of abelian schemes.

Remark 0.6. At first glance it might seem that in the case 1 = dimS1 = dimS2 = g, Theorem 0.4 is
slightly weaker than [15, Theorem 1.1] where the claim is just F \Fund(f2) ⊆ f−1

2 (Z) for a proper closed
subset Z. However, Proposition 2.8 shows that the two statements are actually equivalent.

Remark 0.7. Let Z be a subset ofA which is not horizontal with respect to either f1 or f2. If Theorem 0.4
holds replacing F by F ∩ (A \ Z), it also holds for F.

Our proof is inspired by the general strategy employed in the low-dimensional setting of [15], which is a
variation of the Pila-Zannier method originally introduced in [45]. After some preliminary considerations,
we are ultimately reduced to showing that the points of the form σ2(b) for b ∈ f2(F) have uniformly
bounded torsion order. Denoting this order by m := m(b), we use the properties of the Betti map to
interpret a collection of conjugates of certain torsion values as rational points within a definable family
in R2g × R2g in the sense of [44].

By analyzing the relationships between Weil heights, torsion orders, and conjugates of algebraic points,
we establish a lower bound on the number of such rational points and an upper bound on their height.
Crucially, these bounds depend on m. On the other hand, the result of Habegger and Pila [23, Corollary
7.2] provides an upper bound on the number of rational points of bounded height in the transcendental
part of such a definable family. As a consequence of Gao’s weak Ax–Schanuel [20, Theorem 3.5], we prove
that the definable family has an empty algebraic part. This allows us to compare the aforementioned
bounds on the number of rational points and deduce a uniform upper bound for m.

However, our higher-dimensional setting introduces several subtle complications that do not arise in
[15]. We summarize below the new technical ingredients developed in this paper:

(a) The height inequality of Dimitrov, Gao, and Habegger [17] provides a uniform height bound only
for torsion values contained in a Zariski open dense subset (see Corollary 1.6). When the base is
a curve this poses no difficulty, since a uniform bound on a dense open subset is equivalent to a
uniform bound for all torsion values. In higher dimension, however, one must carefully track the
excluded closed subset at every step of the proof. Moreover, we apply the height inequality to an
abelian scheme with an f2-fiber as its base, so the open dense subset where heights are bounded is
not stable under addition with respect to the base.

(b) We require an upper bound on the order of torsion values (or their images) depending only on the
heights and degrees of the points. To this end we prove the following:

Proposition (see Proposition 1.9 in the text). Let f : A → S be a g-dimensional abelian scheme
(induced by a morphism of varieties) admitting a non-torsion section σ : S → A. Let K be the field
of definition of S, let s be a torsion value for σ, and set d(s) := [K(s) : Q]. Let h : S(Q) → R be a
height on the base. Then there exist constants c = c(g), C = C(g) independent of s, and a Zariski
open dense subset U ⊆ S such that

ord(σ(s)) ≤
(
(14g)64g

2

d(s)max (1, c · h(s) + C, log d(s))
2
) 35840g3

16 ∀s ∈ U(Q).

The proof combines Rémond’s bound for abelian varieties [47]2 with modular properties of the
Faltings height. When applying this result to f1, we further require compatibility with the height
bound for torsion points relative to f2, which is achieved by suitable choices of heights.

(c) We establish the following proposition, which is crucial in several steps of the proof of Theorem 0.4:

Proposition (see Proposition 1.12 in the text). Let X be a projective variety, B ⊆ X a closed
subvariety, and K a number field containing the fields of definition of X and B. For any a > 0,
there exists δ = δ(K, a) > 0 such that for every α ∈ X(Q)\B(C) with h(α) ≤ a, at least 3

4 [K(α) : K]
distinct K-embeddings τ : K(α) ↪→ C satisfy ατ ∈ Cδ.

2Masser and Zannier obtained a related, though weaker, bound in [35].
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Informally, this shows that for a fixed constant C and subvariety B, a positive proportion of the
Galois conjugates of a point α /∈ B with bounded height avoid a neighborhood of B, with the bound
depending only on the degree of α. This generalizes [15, Lemma 2.8], which treated the case where
B is a finite union of hypersurfaces. It is a useful tool for Zilber–Pink type arguments, as it allows
torsion points to be moved into a “safe region” of the variety where uniform arguments apply.

In this paper, we apply the result uniformly with respect to b ∈ S2(C), on the basis of the auxiliary
families of abelian schemes

X := A1 ×S1
Fb −→ Fb, sX = σ1 ◦ f1 ,

where Fb ⊆ A2,b is a Zariski open subset. So, we must uniformly bound the heights of points p ∈ F,
with b = f1(p), inside a sufficiently large Zariski open subset of A (see Remark 2.2). This is made
possible by a careful choice of height functions, as explained in Section 2.1.1.

(d) In the proof of Theorem 0.4, we must remove a Zariski closed subset from each fiber of f2, but in
a way that does not disrupt the argument. In [15] it is shown that for a point p ∈ F with f2(p) = b
and m = ord(σ2(b)), either “many” k(b)-conjugates of p lie outside the bad locus of A2,b(C), or
“many” of its translates do, where “many” depends only on m in a uniform way.

In the elliptic case (g = 1) the bad locus of each fiber is a finite set of points, which can be
enclosed by small Euclidean disks. In higher dimension, however, the bad locus may have positive
dimension, and controlling the number of translates in it becomes problematic. We therefore modify
the definable-family construction in the Pila–Zannier method: instead of using translates, we rely
exclusively on conjugates. Moreover, the argument must be carried out simultaneously on the fibers
of all conjugates of b over the field of definition. This step relies crucially on Proposition 1.9.

(e) A key new ingredient is the following result that outside a closed locus of the base, rules out any
nontrivial polynomial relation between a fixed nonconstant Betti coordinate and the remaining
ones along a nonconstant real-analytic arc. When the section is non-degenerate in the sense of
Definition 1.3, such closed locus is a proper subset and is denoted by Sdeg: it is defined as the
projection on S of one of Gao’s deceneracy loci for X = σ(S).

Theorem (see Theorem 1.4 in the text). Let C ⊆ S(C) be an irreducible algebraic curve and
consider a simply connected open subset U ⊆ C where periods and logσ are defined. Denote by
βC = (β1, . . . , β2g) : U → R2g the restricted Betti map. If there exist a non-constant Betti coordinate
βi on U and 2g − 1 polynomials P1, . . . , Pi−1, Pi+1, . . . , P2g ∈ R[X1, X2] such that

Pj(βi, βj) ≡ 0 for any j ̸= i , (3)

then C ⊆ Sdeg.

Although this statement is essentially a consequence of Gao’s weak mixed Ax–Schanuel theorem
[20, Theorem 3.5], to our knowledge it has not been explicitly recorded in the literature in this
form. We include it here because it provides a concrete algebraic independence statement for Betti
coordinates of sections, which will be crucial for our later arguments. This should be compared
with the elliptic strategy of Corvaja–Tsimerman–Zannier [15], which relies on André’s independence
theorem [7, Theorem 1.3.1] to control algebraic relations between logarithms and periods. In our
higher-dimensional setting, Gao’s weak Ax–Schanuel theorem yields the needed transcendence input
in a different guise.

Consider the auxiliary family X := A1 ×S1
Fb mentioned in (c), with b varying on S2(C). Inside

Fb we construct a definable set Zb and we must rule out the existence of algebraic arcs in it.
Applying the above reasoning to f1 : A1 → S1 provides a uniform excision: S1,deg disappears for
every b ∈ S2(C) (see Equation (31)), and Theorem 1.4 can be applied directly on any Fb to exclude
pairwise polynomial relations among Betti coordinates along nonconstant algebraic arcs.

(f) In [15], the definable family is constructed from the two sections sX and s′X := σ1 ◦ f1 ◦ t2, and
the Pila–Wilkie theorem is then applied to count rational points. In our case this approach fails:
because of the removed loci discussed above, we cannot control the section s′X , which depends on the
translation automorphism t2. Instead, we propose a different construction of the definable family
Z, and apply the Habegger–Pila counting theorem [23, Corollary 7.2] in place of Pila–Wilkie.
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Remark 0.8. Let us now explain where the assumptions 1)–3) are used in our proof. Assumptions 1) and
2) ensure that the geometric construction is well-defined and meaningful. Assumption 3) is redundant
under Equation (2): in this case, the section is non-degenerate in the sense of Definition 1.3, which already
implies that Zσ is dense and ensures both the validity of the height inequality and of Theorem 1.4. By
contrast, Assumption 3) is only needed to handle the cases not covered by Equation (2).

Finally, we highlight that the present work raises several natural questions. First, it is meaningful to
inquire whether our result is sharp with respect to the choice of O ⊂ Γσ1,σ2

. Specifically:

Question 0.9. Can we find subsets G ⊂ O that are as small as possible such that the points with finite
G-orbits are confined to a proper Zariski-closed subset?

In this direction, Amerik and Cantat in the case of Lagrangian fibrations demonstrate in [1, Section
6.2] that the points with finite G-orbit become Zariski dense when G is sufficiently small. Furthermore,
the following problem is also quite natural:

Question 0.10. What is the generalization of Theorem 0.4 in the case of n > 2 abelian rational fibrations
fi : A 99K Si for i = 1, . . . , n? In particular, what is the optimal relationship between the dimensions of
the bases and g in this setting?

The outline of the paper is the following: in Section 1 we collect the preliminary results. The proof
of Theorem 0.4 is carried out in Section 2.1 and Section 2.2. Additionally, in Section 2.3, we make some
comments on the shape of the Zariski closed subsets Z1 and Z2 that confine the fibers containing the
points with finite orbit. Finally, Appendix A by E. Amerik provides explicit constructions of double
abelian fibrations. It is worth noting that a well-known example of such fibrations is given in [49] for the
case g = 1. While examples in higher dimensions can be obtained by considering products of distinct
elliptic fibrations on a surface, the appendix presents new constructions for g > 1 that are not products.

Acknowledgements The authors are grateful to G. Dill, D. Masser, and R. Pengo for their helpful
responses to questions raised during the preparation of this paper. They also thank the anonymous
referee for valuable comments and for pointing out some subtle issues in an earlier version.

1 Auxiliary results

In this section we present all the tools needed for the proof of Theorem 0.4. We describe the results in
the most general setting.

1.1 Betti map

Let S be a non-singular, irreducible quasi-projective variety and let f : A → S be an abelian scheme
of relative dimension g ≥ 1 with “a zero section” σ0. Moreover we assume that σ : S → A is a non-
torsion section. Each fiber As(C) is analytically isomorphic to a complex torus Cg/Λs and for any subset
T ⊆ S(C) we denote ΛT :=

⊔
s∈T Λs. The space Lie(A) :=

⊔
s∈S(C) Lie(As(C)) has a natural structure

of g-dimensional holomorphic vector bundle π : Lie(A) → S(C) (it is actually a complex Lie algebra
bundle). By using the fiberwise exponential maps one can define a global map exp: Lie(A) → A(C). Let
Σ0 ⊂ A(C) be the image of the zero section of the abelian scheme, then obviously exp−1(Σ0) = ΛS(C).
Clearly S(C) can be covered by finitely many open simply connected subsets where the holomorphic
vector bundle π : Lie(A) → S(C) trivializes. Let U ⊆ S(C) be any of such subsets and consider the
induced holomorphic map π : ΛU → U ; it is actually a fiber bundle with structure group GL(n,Z). Since
U is simply connected, by [16, Lemma 4.7] we conclude that π : ΛU → U is a topologically trivial fiber
bundle. Thus we can find 2g continuous sections of π:

ωi : U → ΛU , i = 1, . . . 2g (4)

such that {ω1(s), . . . , ω2g(s)} is a set of periods for Λs for any s ∈ U . Since ΛU ⊆ Lie(A)|U , we can put
periods into the following commutative diagram:

Lie(A)|U

S(C) ⊃ U A|U ,

exp|U

σ0|U

ωi
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where σ0 is the zero section. Since σ0 is holomorphic and exp is a local biholomorphism, then the period
functions defined in Equation (4) are holomorphic. The map P = (ω1, . . . , ω2g) is called a period map;
roughly speaking it selects a Z-basis for Λs which varies holomorphically for s ∈ U . For any s ∈ U
we denote by Πs ∈ Mat(C, g × 2g) the matrix whose columns are the vectors ωi(s), this is called the
period matrix. The set U ⊆ S(C) is simply connected therefore we can choose a holomorphic lifting
ℓσ : U → Lie(A) of the restriction σ|U ; ℓσ is often called an abelian logarithm. Thus for any s ∈ U we
can write uniquely

ℓσ(s) = β1(s)ω1(s) + . . .+ β2gω2g(s) (5)

where βi : U → R is a real analytic function for i = 1, . . . , 2g. The map βσ : U → R2g defined as
βσ = (β1, . . . , β2g) is called the Betti map associated to the section σ, whereas the βi’s are the Betti
coordinates. The relation between the the logarithm, the periods and the Betti coordinates can be
obviously expressed in the following compact and useful way:

ℓσ(s) = Πsβσ(s) , ∀s ∈ U (6)

Observe that the Betti map depends both on the choice of period map P and on the abelian logarithm
ℓσ, but this is irrelevant for our applications. The main feature of the Betti map is that βσ(s) ∈ Q2g if
and only if s is a torsion value of σ, so it allows us to treat the study of the torsion values of an abelian
scheme as a transcendental Diophantine problem. Note that we need a non-torsion section σ otherwise
βσ would be obviously constant and equal to a rational point. Viceversa, we recall that as a consequence
of Manin’s “theorem of the kernel” (see [31] or [11]) if βσ is locally constant then σ is torsion. Moreover,
the fibers of βσ are complex submanifolds of S(C) (see [14, Proposition 2.1] or [8, Section 4.2]).

Remark 1.1. There exists a compact subset D ⊆ U such that the Betti map βσ restricted to D is
definable in the o-minimal structure Ran,exp (using the real charts). This follows for instance by using
[41, Fact 4.3] and the fact that for i = 1, . . . , 2g we have βi = πi ◦ ℓσ, where πi is the projection on the
i-th coordinate with respect to the period map.

The rank, in the sense of real differential geometry, of the Betti map at a point s is denoted by
rankR dβσ(s). It can be shown that it depends only on the point s (see for instance [8, Section 4.2.1] or
[19, Section 4]). Moreover we define the generic rank of the Betti map by

rankR dβσ = max
s∈S(C)

rankR dβσ(s) (7)

and note that it obviously holds that rankR dβσ ≤ 2min(g,dimS). When g = dimS and the generic rank
is maximal, the following proposition allows us to have a uniform control on the fibers of the Betti map.

Proposition 1.2. Let 2 dimS = 2g = rankR dβσ. There exist a non-empty Zariski open set U of S(C)
such that: for any x ∈ U there is a compact subanalytic set D ⊆ S(C) containing x and a constant
c = c(D) such that the Betti map βσ : D → R2g has finite fibers of cardinality at most c.

Proof. From the condition on the rank of the Betti map it follows immediately that there exists a non-
empty Zariski open set U ⊆ S(C) on which βσ is a submersion. Pick any compact subanalytic D inside U
and contained in a chart. Restrict the Betti map on D and identify the latter with an euclidean compact
in R2g. Since βσ is now a submersion, the fibers must have real codimension equal to 2g (see for instance
[29, Corollary 5.13]), which means that the fibers are discrete, and hence finite (D is compact). It remains
to prove the uniform bound on the cardinality. So consider the subanalytic set

Z := {(z, βσ(z)) : z ∈ D} ⊂ R2g × R2g .

Let π2 : R2g × R2g → R2g the projection on the second factor, then for any p ∈ R2g we obviously have

Z ∩ π−1
2 (p) = β−1

σ (p) .

By Gabrielov’s theorem (see [52, Theorem A.4] or [12, Theorem 3.14]) Z∩π−1
2 (p) has at most c connected

components, hence β−1
σ (p) has cardinality at most c.

In the general case, defining X := σ(S), the behavior of the generic rank of the Betti map is controlled
via the degeneracy loci . . . Xdeg(−1) ⊆ Xdeg(0) ⊆ Xdeg(1) ⊆ . . . ⊆ X introduced in Gao’s work. We
refer the reader directly to [19, Definition 1.6]. Notice that, by [19, Theorem 1.8], the locus Xdeg(t) is
Zariski closed in X for every t ∈ Z.
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Definition 1.3. A section σ : S(C) → A(C) is degenerate if Xdeg(0) = X.

Note that any section is trivially degenerate if g < dimS. In the case g = dimS, [19, Theorem 1.7]
shows that a section σ : S(C) → A(C) is degenerate if and only if

rankR(dβσ) < 2 dimS.

Furthermore, under the assumption g = dimS, a non-degenerate section σ has the property that Zσ is
Zariski dense. Finally, since the structure map f : A → S is an isomorphism when restricted to X, we
can define the closed locus

Sdeg := f(Xdeg(0)) ⊆ S(C). (8)

Notice that Sdeg contains the locus {s ∈ S(C) : rankR(dβσ)(s) < 2g} where the rank of the Betti map
drops. If σ is non-degenerate, Sdeg is a proper closed subset of S.

It is worth noting that Gao’s weak Ax–Schanuel theorem (see [20, Theorem 3.5]) plays a crucial role
in the proofs of [19, Theorems 1.7 and 1.8].

1.2 Transcendence of Betti coordinates

Let f : A → S be an abelian scheme of relative dimension g ≥ 1 with a section σ : S → A, both
defined over a number field K. The following result does not require any additional hypothesis on
the abelian scheme nor on the section, altought in our paper we will apply it restricting to the case
2 dimS = 2g = rankR dβ where β = (β1, . . . , β2g) is the Betti map of σ, which ensures that the section σ
is non-degenerate.

Theorem 1.4. Let C ⊆ S(C) be an irreducible algebraic curve and consider a simply connected open
subset U ⊆ C where periods and logσ are defined. Denote by βC = (β1, . . . , β2g) : U → R2g the
restricted Betti map. If there exist a non-constant Betti coordinate βi on U and 2g − 1 polynomials
P1, . . . , Pi−1, Pi+1, . . . , P2g ∈ R[X1, X2] such that

Pj(βi, βj) ≡ 0 for any j ̸= i , (9)

then C ⊆ Sdeg.

Proof. Replacing Pj by an irreducible factor if necessary, we may assume that each Pj is irreducible.
Define the real algebraic curve

Γj := {(x, y) ∈ R2 : Pj(x, y) = 0}

and its smooth and singular loci

Γj,sm = {(x, y) ∈ Γj : ∇Pj(x, y) ̸= (0, 0)} , Γj,sing := Γj \ Γj,sm .

Note that Γj,sm is Zariski open and dense in Γj and Γj,sing is finite. Since βi is non-constant and βi, βj
are continuous, the set

V := {s ∈ U : (βi(s), βj(s)) ∈ Γj,sm }

is an euclidean open non-empty subset of C. For every s ∈ V and every j ̸= i, after differentiating
Equation (9) we have a nontrivial linear relation

(∂1Pj)
(
βi(s), βj(s)

)
dβi(s) + (∂2Pj)

(
βi(s), βj(s)

)
dβj(s) = 0.

In particular, since i is fixed and j varies, this implies rankR dβ(s) ≤ 1 for any s ∈ V . Note that
rankR dβ(s) must be an even number for each s, as each ωi(s) is holomorphic. Therefore, since the rank
drop locus of the Betti map on C is a Zariski closed subset (see again [19, Theorem 1.8]), we conclude
that the generic rank of the Betti map over C is

rankR dβC = 0.

This implies that the map βC is locally constant. Hence, by Manin’s kernel theorem, a multiple of σC
is contained in the fixed part of the restricted abelian scheme A|C/C, i.e. the subvariety σ(C) is weakly
special (we refer the reader to [19, Definition 1.5]). This implies σ(C) ⊂ Xdeg(0) where X := σ(S), or
equivalently C ⊆ Sdeg.
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1.3 Height bounds

In this short subsection we use the same notation of Section 1.1. Let M be a relative f -ample and
symmetric line bundle on A, then we define ĥ : A(Q) → R to be the fiberwise Néron-Tate height i.e.

ĥ(p) = ĥM(p) := lim
n→∞

1

4n
hM (2np) .

Note that ĥ(p) = ĥMs
(p) with s = f(p). Moreover we consider a height function h : S(Q) → R on the

base. The following height inequality proved in [17, Theorem B.1] (see also [51, Theorem 5.3.5] for a

more general approach) is a crucial result that relates the values of ĥ and h:

Theorem 1.5 (Height inequality for abelian schemes). Let X be an irreducible and non-degenerate3

subvariety of A that dominates S. Then there exist two constants c1 > 0 and c2 ≥ 0 and a Zariski
non-empty open subset V ⊆ X with

ĥ(p) ≥ c1h(f(p))− c2 for all p ∈ V
(
Q
)
.

Proof. See [17, Theorem B.1].

Corollary 1.6. Assume that f : A → S is endowed with a non-degenerate section σ : S(C) → A(C).
Then there exists a constant C ≥ 0 and a non-empty Zariski open subset V ⊆ S such that

h(s) ≤ C for all s ∈ V (Q) ∩ σ−1(Ator). (10)

Remark 1.7. When dim(S) = g the open set V can be chosen as the complement of the locus defined in
Equation (8), i.e. S \V = Sdeg (see for instance [22, explanation after Thm. C]). Note that if the abelian
scheme A → S and the section σ are defined over Q, then S \V is a Zariski closed subset defined over Q.

1.4 Torsion bounds

Let’s quickly recall the definition of the stable Faltings height. Let A be a g-dimensional abelian variety
over a number field K. Choose a finite extension L ⊇ K such that A⊗ L has semistable reduction, and
let A → S := SpecOL be the (connected) Néron model of A⊗ L with zero section ϵ : S → A. Put

ωA/S := ϵ∗Ωg
A/S .

Equip ωA/S with the standard Faltings/Petersson hermitian metric: at archimedean places, the L2 metric
by integrating translation-invariant differentials on the complex fibres; at finite places, the model metrics
coming from A/S. Write ωA/S for this metrized line bundle. The stable Faltings height of A is

hF (A) :=
1

[L : Q]
d̂eg
(
ωA/S

)
,

and it is independent of the choice of L (see [18, §3]). The stable Faltings height controls torsion:

Proposition 1.8. Let A be an abelian variety of dimension g defined over a number field K. The finite
group A(K)tor has exponent at most κ(A)

35
16 and cardinality at most κ(A)4g+1, where d = [K : Q] and

κ(A) =
(
(14g)64g

2

dmax(1, hF (A), log d)
2
)1024g3

.

Proof. See [47, Proposition 2.9].

Now let f : A → S be a g-dimensional abelian scheme over a quasi-projective variety S defined over
a number field K. Set

λA/S := det f∗(Ω
1
A/S).

For abelian schemes there is a canonical identification

λA/S
∼= ωA/S , (11)

Equip λA/S (equivalently ωA/S) with a semipositive adelic metric as follows:

3The references [17] and [21] use a slightly different (but equivalent) definition of Betti map and they have a notion
of non-degenerate subvariety. A section σ is non-degenerate in our sense if and only if the subvariety σ(S(C)) of A is
non-degenerate in the sense of Dimitrov, Gao, Habbegger.
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• at archimedean places, the L2 (Petersson/Faltings) metric;

• at finite places, the model metrics characterized by the property that for any s ∈ S(Q) with field
K(s) and any finite extension L/K(s) over which the fibre As is semistable with (connected) Néron
model N → SpecOL, the pullback along an integral lift

s̃ : SpecOL −→ S

(of the L-point s : SpecL → SL := S ×SpecK SpecL, obtained by the valuative criterion after
enlarging L if needed) satisfies the canonical isometry

s̃ ∗ λA/S
∼= ϵ∗Ωg

N/OL
. (12)

Let h : S(Q) → R be the height attached to this adelically metrized line bundle λA/S . Then for every

s ∈ S(Q) and any such semistable L/K(s),

h(s) =
1

[L : Q]
d̂eg
(
s̃ ∗ λA/S

)
=

1

[L : Q]
d̂eg
(
ϵ∗Ωg

N/OL

)
= hF (As), (13)

the last equality being exactly the definition of the stable Faltings height. Moreover, by the the discussion
at the bottom of [18, p. 39]) and the standard height machine, there exist positive constants C1, C2, C3

and a proper Zariski closed subset Z ⊂ S such that for all s ∈ S(Q) \ Z,

hF (As) = h(s) ≤ C1 h(s) + C2 log
(
1 + h(s)

)
+ C3, (14)

where h is any fixed ample height on S. Finally, using log(1+ t) ≤ t for t ≥ 0, we absorb the logarithmic
term to deduce the linear bound

hF (As) ≤ C3 + (C1 + C2)h(s) (s ∈ S(Q) \ Z). (15)

Proposition 1.9. Let f : A → S be a g-dimensional abelian scheme (induced by a morphism of varieties)
admitting a non-torsion section σ : S → A. Let K be the field of definition of S, let s be a torsion value
for σ and put d(s) := [K(s) : Q]. Let h : S(Q) → R be a height on the base corresponding to an ample
line bundle. Then there exist real constants c = c(g), C = C(g) (independent of s) and a Zariski open
dense subset U ⊆ S such that

ord(σ(s)) ≤
(
(14g)64g

2

d(s)max (1, c · h(s) + C, log d(s))
2
) 35840g3

16 ∀s ∈ U(Q) .

Proof. Possibly shrinking S we may assume U := S \ Z is nonempty. For s ∈ U(Q) with σ(s) torsion,
the fibre As is an abelian variety over the number field K(s). By Equation (15) we have

hF (As) ≤ C3 + (C1 + C2)h(s).

Applying Proposition 1.8 over K(s) (so d = d(s)) and inserting this bound for hF (As) inside κ(As)
yields the claimed inequality after adjusting absolute constants (depending only on g). This proves the
statement for all s ∈ U(Q).

1.5 Control on conjugate points

Let’s fix an affine variety Y (C) ⊆ AN (C) ⊂ PN (C) defined over a number field K. For any point p ∈ Y (C)
we denote by K(p) the field generated by the coordinates of p; this is the same as the residue field of p
when the latter is seen as an abstract point of Y . With the letter h we denote both the absolute height
on PN (Q) and A1(Q), since the formal meaning is clear from the argument of h. Further, we denote by
∥ · ∥ the euclidean norm in AN (C). We fix a closed subvariety B′ of Y and we define

W ′
δ := {x ∈ Y (C) : d(x,B′(C)) < δ}, for δ ∈ R>0

where
d(x,B′(C)) := inf

b∈B′(C)
∥x− b∥ .

Moreover let’s consider the set C ′
δ := Y (C) \W ′

δ.
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Lemma 1.10. Let H be a subset of Y (C) and let C be a compact subset of H. Fixed p ∈ Y (C)\H, there
exists a constant c (uniform with respect to b ∈ C) such that

d(p,H) ≥ c · ∥p− b∥ for each b ∈ C.

Proof. For each b ∈ C, let us consider a constant ab which satisfies 0 < ab <
d(p,H)
∥p−b∥ (note that it exists

since p /∈ H). Observe that ab is a constant which depends on b and such that

d(p,H)− ab · ∥p− b∥ > 0.

Then there exists an open (analytic) neighbourhood Nb of b such that

d(p,H)− ab · ∥p− b′∥ > 0 for each b′ ∈ Nb.

The family {Nb : b ∈ H} is an open covering of the compact set C. Thus there exists a finite subcovering
{Nbi : i = 1, . . . , n}. The constant c := min1≤i≤n(abi) works uniformly on C. In fact for each b ∈ C we
have

c · ∥p− b∥ ≤ ab · ∥p− b∥ < d(p,H).

Proposition 1.11. Let K be a number field which contains the field of definition of the subvariety B′.
Given a real constant a > 0, there exists a real constant δ = δ(K, a) > 0 with the following property: for
any α ∈ Y (Q)\B′(C) with h(α) ≤ a, there are at least 3

4 [K(α) : K] different K-embeddings τ : K(α) ↪→ C
such that ατ lies in C ′

δ.

Proof. Fix β = (β1, . . . , βN ) ∈ B′(Q) such that there exists an index i with βi ∈ K(α) (observe that such
a β always exists); and write α := (α1, . . . , αN ). Clearly h(α) ≥ h(αi) and h(β) ≥ h(βi). This implies

h(αi − βi) ≤ h(αi) + h(βi) + log(2) ≤ h(α) + h(β) + log(2). (16)

Fix δ > 0. We define
Σ := {τ : K(α) ↪→ C : id = τ|K and ατ /∈ C ′

δ}

and denote by k the cardinality of Σ. Since τ is a K-embedding we have βτ ∈ B′(Q). Moreover
observe that, given τ ∈ Σ, we have ατ /∈ B′(C). Thus, by Lemma 1.10 for p = ατ , H = B′(C) and
C = {βτ : τ ∈ Σ}, and since ατ /∈ C ′

δ (by definition of Σ) there exists a constant cτ such that

1

|ατ
i − βτ

i |
≥ 1

∥ατ − βτ∥
≥ cτ
d(ατ , B(C))

>
cτ
δ
.

Considering c := minτ∈Σ(cτ ) we obtain a constant c such that:

1

|ατ
i − βτ

i |
≥ c

δ
for fixed i and for all τ ∈ Σ.

Then for δ small enough we obtain

h(αi − βi) ≥
1

[K(α) : Q]

∑
ν

logmax

(
1,

∣∣∣∣ 1

αi − βi

∣∣∣∣
ν

)
≥

≥ 1

[K(α) : Q]

∑
τ∈Σ

logmax

(
1,

∣∣∣∣ 1

ατ
i − βτ

i

∣∣∣∣) ≥ k

[K(α) : Q]
log
( c
δ

)
.

(17)

By (16), (17) and the fact that α has bounded height we obtain

k ≤ (a+ h(β) + log(2)) · [K(α) : Q]

log(c/δ)
.

For δ small enough we have
a+ h(β) + log(2)

log(c/δ)
≤ 1

4[K : Q]
.

Therefore

k ≤ 1

4
[K(α) : K].

11



Now let’s fix a projective variety X defined over K and a closed subvariety B of X. For any point

p = (x0 : . . . : xN ) ∈ X(C) pick any xi ̸= 0 and then put K(p) := K
(

xj

xi
: j = 0, . . . , N

)
. Note that K(p)

doesn’t depend on the choice of xi (i.e. the standard affine chart) and moreover K(p) is the residue field
of p when the latter is seen as an abstract point of X. We prove a higher dimensional generalization of a
quite useful result already appeared for the projective line in [33, 34, 35, Lemma 8.2] and for hypersurfaces
in [15, Lemma 2.8]. Roughly speaking the result claims the following: K is the field of definition of B,
a ∈ R and α ∈ X(Q) is any point not contained in B(C) with height at most a; then we can give an
explicit lower bound, depending only on [K(α) : K], on the number of K(α) conjugates of α that lie in
a “big enough” compact not intersecting B(C).

We first construct the compact subset. Denote by U0, . . . , UN the standard affine charts of the
projective space. Let’s define

Wi,δ := {x ∈ X(C) ∩ Ui : d(x,B(C) ∩ Ui) < δ} for fixed δ ∈ R>0 and i = 1, . . . , N. (18)

Then we put Wδ :=
⋃N

i=0Wi,δ and note that it is an open subset of X(C) containing B(C). Therefore
Cδ := X(C) \Wδ is a compact set not intersecting B(C).

Proposition 1.12. Let K be a number field which contains the field of definition of the subvariety B.
Given a real constant a > 0, there exists a real constant δ = δ(K, a) > 0 with the following property: for
any α ∈ X(Q)\B(C) with h(α) ≤ a, there are at least 3

4 [K(α) : K] different K-embeddings τ : K(α) ↪→ C
such that ατ lies in Cδ.

Proof. Fix α ∈ X(Q)\B(C) with h(α) ≤ a and fix a chart Ui such that α ∈ Ui. Since the chart is invariant
under the action of each τ , we can apply Proposition 1.11 for Y (C) = X(C) ∩ Ui, B

′(C) = Y (C) ∩B(C)
and C ′

δ = Cδ ∩ Ui. Therefore, we obtain a real number δi which only depends on K, a and Ui and which
satisfies the statement for α ∈ Ui. We can repeat the argument for any standard chart and after defining
δ := min0≤i≤N (δi), we can conclude.

Ui

B

Wi,δ

δ

ατ1

ατ2

. . .

α

Figure 1: A representation of the portion of conjugates of α that stay away from a euclidean open set
Wi,δ that tightly encircles a Zariski closed set B. The set Ui is a selected affine chart.

Remark 1.13. Observe that the the intersection of Cδ with each standard chart Ui is definable in
the o-minimal structure Ran,exp. In fact, first of all let’s identify Ui ∩ X(C) with R2N , then the map
R2N ∋ p 7→ d(p,B(C) ∩ Ui) is a globally subanalytic function (see for instance [10, Example 2.10]). At
this point we apply [50, §1 Lemma 2.3] to conclude that the set Wi,δ = Ui ∩Wδ is globally subanalytic
for any δ > 0. Finally, note that the intersection Cδ ∩Ui is the complement set (Ui ∩X(C)) \ (Ui ∩Wi,δ),
so it is also globally subanalytic.

2 The main theorem

In this section we prove Theorem 0.4. The proof is rather long and technical; it will be eventually split
in two cases after a common setup. We use the same notations fixed in the introduction and we work
under the assumption Equation (2).
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2.1 Setup of the proof

Our proof necessitates a considerably intricate preparation, which we delineate as follows.

2.1.1 Construction of the height

To establish an arithmetic relationship between the two fibrations f1 and f2, we must construct a specific
height on A \ Fund(f1) that will be fixed once and for all.

Let L be an ample line bundle on S1, and let M be the pullback of L via f1 : A \ Fund(f1) → S1.
Note that M is semi-ample on A \ Fund(f1). Since A is nonsingular and Fund(f1) has codimension at
least 2, the line bundle M admits a unique extension to the entire A. By simplicity we denote this
extension by M but recall that it is semi-ample only on A \ Fund(f1). Define now the line bundles
M1 := M ⊗ [−1]∗M−1 and M2 := M ⊗ [−1]∗M. After restricting to A2 we construct two canonical
heights on A2:

ĥMi
(p) := lim

n→∞

1

2in
hMi

(2np) ,

where [−1] and the multiplication by 2 are computed with respect to the fibration f2. Then we define

ĥM :=
1

2
ĥM1 +

1

2
ĥM2 .

The height ĥM has three relevant properties for our aims:

(i) If x ∈ A2,tor, then ĥM(x) = 0 .

(ii) ĥM(x+ y) + ĥM(x− y) = 2ĥM(x) + ĥM(y) + ĥM(−y) for any x, y such that f2(x) = f2(y) .

(iii) ĥM(x) − hM(x) = O (hL(f1(x))) for all x /∈ Fund(f1), by the Silverman-Tate formula (see for
instance [48, Exercise 9.A]).

Furthermore, since M is obtained as pullback of L via f1, we also have

(iv) ĥM(x)− (hL ◦ f1)(x) = O (hL(f1(x))) for all x /∈ Fund(f1).

The line bundle M is semi-ample on A\Fund(f1), so there exists a power M⊗k that is basepoint-free.
It means that there exists a morphism (not necessarilly an embedding) ϕk : A\Fund(f1) → PN , such that
M⊗k = ϕ∗k(O(1)). By the Weil height machine we have khM(x)− h(ϕk(x)) = O(1) for all x ∈ A2,b(Q),
where the implicit constant is independent from b and h is the standard projective height.

Lemma 2.1. There exists a projective embedding ι : A \ Fund(f1) ↪→ Pn (with n big enough) such that
ϕk : A \ Fund(f1) → PN extends to a rational map ϕk : Pn 99K PN .

Proof. We can assume that A \ Fund(f1) comes with a fixed projective embedding A \ Fund(f1) ⊂ Pm.
Let Γ ⊂ Pm × PN be the graph of ϕk and consider the Segre embedding:

σ : Pm × PN ↪→ Pn, n = (m+ 1)(N + 1)− 1.

Denote Σ = σ(Pm×PN ) ⊂ Pn, then σ(Γ) ⊂ Σ is a closed subvariety. The projection π2 : Pm×PN → PN

induces a rational map π2 ◦ σ−1 : Pn 99K PN well defined on Σ. The desired embedding ι is then given
by the composition:

A2,b ↪→ Γ ↪→ Pm × PN ↪→ Pn.

It is clear from the construction that the above rational map π2 ◦ σ−1 extends ϕk.

Now, by [27, Theorem B.2.5(b)] applied to the above rational map ϕk : Pn 99K PN , there exists an
integer ℓ such that ℓh − h ◦ ϕk = O(1) on the whole A \ Fund(f1). Therefore, we can deduce the fifth

main property of our height ĥM:

(v) kĥM(x) − ℓhι(x) = O(hL(f1(x))) + O(1), for all x /∈ Fund(f1). Here hι is the projective height
induced by the embedding ι : A \ Fund(f1) ↪→ Pn introduced in Lemma 2.1.

From now on, in order to make use of the properties (i)-(v), we will fix the following data: the line bundle

L (and consequently M); the height ĥM on A \ Fund(f1); the projective embeddings ι.
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2.1.2 Removing Zariski closed subsets

By Remark 0.7 it’s enough to prove Theorem 0.4 for F∩A′, where A′ is obtained from A after removing
some non-horizontal Zariski closed subsets with respect to f1 or f2. Below we describe how to obtain A′.

Let R1 be the the Zariski closed subset of S1 defined as the union of the following proper Zariski
closed subsets:

• The locus Sing1 of singular fibers of the abelian scheme f1 : A1 → S1.

• The locus E where two fibers A1,s1 and A2,s2 are equal.

• The locus Ind1 containing the f1-images of points where the rational map f2 is not defined (see
Assumption 2)).

• The locus CRém,1 where the inequality in Proposition 1.9 does not hold.

• The locus S1,deg of Theorem 1.4 (applied to f : A1 → S1) outside of which the Betti coordinates
are algebraically independent along curves. By Remark 1.7, this is also the locus where the height
bound in Corollary 1.6 does not hold. Furthermore, note that it also contains the locus of critical
points of the Betti map β1, i.e. where β1 is not a submersion and Proposition 1.2 fails.

From now on we will work with the abelian scheme A1 restricted to S1 \R1 and by abuse of notation
we keep denoting the base of such abelian scheme as S1

Let R2 be the the Zariski closed subset of S2 defined as the union of the following proper Zariski
closed subsets:

• The locus Sing2 of singular fibers of the abelian scheme f2 : A2 → S2.

• The locus Ind2 containing the f2-images of points where the rational map f1 is not defined (see
Assumption 2)).

• The locus CRém,2 where the inequality in Proposition 1.9 does not hold.

• The locus S2,deg of Theorem 1.4 (applied to f2 : A2 → S2), which has the same properties listed
above for S1,deg.

We will work with the abelian scheme A2 restricted to S2 \ R2 and by abuse of notation we keep
denoting the base of such abelian scheme as S2

We fix a number field K containing all the fields of definitions of A, S1, S2, f1, f2, σ1, σ2 and all the
proper Zariski closed subset listed above. Let’s define

A′ := A2 \
(
f−1
1 (R1) ∪ f−1

2 (R2)
)
. (19)

For any f2-fiber A2,b := f−1
2 (b), we define the Zariski open subset

Fb := A2,b ∩ A′. (20)

The restriction to Fb allows to get rid of the ‘problematic’ Zariski closed subset A2,b \ A′.

Remark 2.2. The height ĥM satisfies the following crucial condition when restricted to a special open
subset: if p ∈ F ∩ A′ and b = f2(p), then the properties (iii)-(v) of Section 2.1.1 hold with a uniform
O(1) on the right hand side, instead of O(hL(f1(p))). In particular, if we restrict to such kind of points

p ∈ F ∩ A′, there exists a uniform constant Cheight that bounds from above ĥM(p), h(b) and hL(f1(p)).

If p ∈ A′ and b = f2(p) we clearly have thatK(b) ⊆ K(p). We define the set of complexK-embeddings
of the field K(p):

Σp := {τ : K(p) ↪→ C | τ|K = id}. (21)

Given τ ∈ Σp we get f2(p
τ ) = bτ , but observe that two conjugates of b might coincide. Each element of

Σp induces by restriction a complex K-embedding of K(b) in a surjective way. Since we have the uniform
bound Cheight introduced in Remark 2.2, we can apply Proposition 1.9 and we obtain two constants
η = η(g) and η′ = η′(g) depending only on g such that

ord(σ1(s)) ≤ C ′
Rém · [K(s) : K]CRém for any s ∈ S1, (22)
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where

CRém = CRém(g) := 3 · 35840g
3

16
, C ′

Rém = C ′
Rém(g,K) := (14g)64g

2

(η′ ·Cheight+η) · [K : Q]CRém . (23)

Analogously, by using again the uniform bound Cheight for the σ2-torsion values and Proposition 1.9
we obtain

ord(σ2(b)) ≤ C ′
Rém · [K(b) : K]CRém for any b ∈ S2, (24)

with the same constants defined in Equation (23).

2.1.3 Removing euclidean open subsets

During the proof we need to apply our arguments with enough uniformity after removing the afore-
mentioned Zariski closed subsets on the bases S1, S2 and on each fiber A2,b. We want to cut out small
euclidean open subsets which encircle the Zariski closed subsets, so that we can work on compact analytic
subsets containing enough conjugates of the points that we want to study.

Firstly, we consider the Zariski closed subset R2 on the base S2. By applying Proposition 1.12 with
respect to the height bound Cheight introduced in Remark 2.2, we get an analytic compact set

∆ ⊆ S2 (25)

(in the above notation we have ∆ = Cδ for some δ > 0 small enough) such that for any b ∈ S2 with
h(b) ≤ Cheight there are at least

3
4 [K(b) : K] different K-embeddings τ : K(b) ↪→ C satisfying bτ ∈ ∆. By

Remark 1.13 the compact set ∆ has the property that the intersection ∆ ∩ Ui with each standard chart
is definable in the o-minimal structure Ran,exp.

Analogously, we want to cut out small euclidean open subsets of each f2-fiber and of the base S1

which encircle the sets A2,b \ Fb and R1 respectively, so that we can work on a compact subsets of each
fiber and of the base. We follow the same construction as in Equation (18). Since this construction does
not depend on the shape of the Zariski closed subset removed in Equation (19), we explain it for general
closed subsets.

Let’s embed the fiber A2,b(C) inside some PN (C) and let U ′
0, . . . , U

′
N ⊆ PN (C) be the standard charts.

Let us consider a Zariski closed subset Y ⊆ S1 and define

Xb = A2,b(C) ∩ f−1
1 (Y (C)). (26)

After identifying A2,b(C) ∩ U ′
i with R2N , we can consider the globally subanalytic sets

Vi,δ := {z ∈ A2,b(C) ∩ U ′
i : d(z,Xb ∩ U ′

i) < δ}

for any δ > 0 small enough and define

Vb,δ :=
N⋃
i=0

Vi,δ. (27)

This shows that the Zariski closed subset Xb is contained in a small enough euclidean open subset
Vb,δ ⊆ A2,b(C) whose intersection Vb,δ ∩ U ′

i with each standard chart of PN (C) is definable in the o-
minimal structure Ran,exp.

Denote by U0, . . . , UM the standard affine charts on S1(C). Analogously, we can encircle Y with a
small enough open set of which we can control the size (chart-by-chart), so let us consider the sets

Wi,δ := {z ∈ S1(C) ∩ Ui : d(z, Y ∩ Ui) < δ}

for any δ > 0 small enough, and define

Wδ :=

M⋃
i=0

Wi,δ. (28)

We can carry out the construction of Vb,δ and Wδ such that f1(Vb,δ) ⊆Wδ, so that their size is controlled
via the same δ.

We apply this construction to the Zariski closed sets A2,b \ Fb and R1. Therefore, in the rest of the
proof we denote by Vb,δ ⊂ A2,b(C) a euclidean open subset which contains the locus A2,b \Fb and by Wδ

a euclidean open subset which contains the locus R1 with the property f1(Vb,δ) ⊆ Wδ. We choose δ > 0
small enough to ensure that Proposition 1.12 can be applied on the compact sets A2,b \ Vb,δ and S1 \Wδ

with respect to the height bound Cheight. Notice that the intersections Vb,δ ∩ U ′
i and Wδ ∩ Ui with each

standard chart of PN (C) and PM (C) respectively is definable in the o-minimal structure Ran,exp. Define

Tb,δ := A2,b(C) \ Vb,δ, ∆′ := S1 \Wδ . (29)
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Remark 2.3. It is essential here to implicitly use property (v) of Section 2.1.1. Indeed, Proposition 1.12
requires the variety to be embedded projectively, and the height must be the one induced by this embed-
ding.

2.1.4 Auxiliary abelian schemes

We need to construct an auxiliary abelian scheme for any b ∈ ∆ that will play a crucial role in the whole
proof. Let us consider the variety Fb introduced in Equation (20) and define the following auxiliary
abelian scheme:

X := A1 ×S1,f1 Fb → Fb , for any b ∈ ∆, (30)

endowed with the following non torsion section,

sX := σ1 ◦ f1 .

Let β and ℓ, be the Betti maps and the logarithms of sX with respect to a period matrix Π. Note that X
depends on the choice of b, but for simplicity of notations we don’t write such dependence. The auxiliary
scheme X → Fb endowed with sX clearly satisfies the hypotheses needed for Theorem 1.4. In addition,
restricting to Fb ensures that

Fb,deg = ∅ . (31)

The sX -torsion values lying in A′ inherit the height bound Cheight and the following bound on their
order:

ord(sX (z)) ≤ C ′
Rém · [K(z) : K]CRém for any z ∈ Fb. (32)

Moreover, when we need we can further restrict to the compact analytic subset Tb,δ constructed in
Equation (29), ensuring that each point z ∈ Tb,δ with height at most Cheight has enough conjugates in
Tb,δ.

A′

A1,f1(z)

Tb,δ

• z

S1

S2 •
b

• f1(z)
f1

f2

X

Figure 2: A schematization of the family X → Tb,δ.

2.1.5 Reduction argument

Let us consider b ∈ f2(A′). If b is a σ2-torsion value it has height bounded by Cheight, so we can ensure
that it has enough conjugates in the compact set ∆ constructed in Equation (25). Since the order of
σ2(b) and the set S2 are invariant under the action of any K-embedding τ : K(b) ↪→ C, in our proof we
can always replace b by bτ and consequently assume b ∈ ∆. Roughly speaking we have just explained
that we can assume that b lies in a “big enough” compact set of S2(C) that avoids the bad locus of f2.

Fix b ∈ ∆ and p ∈ F ∩A′ such that f2(p) = b. Since p ∈ F, then f1(p) is a σ1-torsion value and f2(p)
is a σ2-torsion value. We denote

m = m(b) := ord(σ2(b)) (33)
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and define
O := {ord(σ2(b)) : b ∈ f2(F) ∩∆)} ⊆ N, (34)

where clearly the order is intended in A2,b. Moreover, for any r = 0, 1, . . . ,m− 1 we define

pr := tr2(p) = p+ rσ2(b) and nr := ordσ1(f1(pr)) . (35)

Let Σp be the set defined in Equation (21). For any τ ∈ Σp we fix the following notation to denote
the ‘transaltes’ of pτ :

ar = a(b,p,τ)r := f1(p
τ + rσ2(b

τ )) for r = 0, . . . ,m− 1. (36)

Further, we can decompose the compact set ∆ as a finite union of small definable compact sets Ξi.
We work in one of those compact sets that contains b and we call it Ξ, in symbols we have

∆ ⊆
⋃

Ξi, b ∈ Ξ. (37)

Analogously, we can decompose the compact set ∆′ on S1 (see Equation (29)) as a finite union of small
definable compact sets Ξ′

i where the Betti map of the section σ1 is defined. We work in one of those
compact sets that contains f1(p) and we call it Ξ′, in symbols we have

∆′ ⊆
⋃

Ξ′
i, f1(p) ∈ Ξ′. (38)

When we want to control the conjugates of p with respect to Ξ and/or Ξ′ we will use the following subsets
of Σp:

Σp,Ξ := {τ ∈ Σp : bτ ∈ Ξ}, Σp,Ξ,Ξ′ := {τ ∈ Σp : bτ ∈ Ξ, f1(p)
τ ∈ Ξ′}. (39)

Up to replace b, p with bτ , pτ and up to change Ξ and Ξ′, since the number of Ξi’s and Ξ′
i’s is fixed and

by construction of ∆ and ∆′, we can apply Proposition 1.12 to b and f1(p) and conclude the following:

#Σp,Ξ ≫ [K(p) : K] and #Σp,Ξ,Ξ′ ≫ [K(p) : K] , (40)

where the implicit constants are independent from p and b.

2.1.6 Distribution of f1-images of conjugates

As a consequence of Remark 2.2 we show in Proposition 2.4 that it is possible to control the distribution
of conjugates of p and their images on the two bases S1 and S2. Specifically, as explained in Section 2.1.3
we generally work with a subset of the base S1(C) as defined in Equation (29) and we must ensure that
a “good portion” of conjugates is stable with respect to the euclidean coverings defined in Equation (37)
and Equation (38).

We use the notations introduced in Equations (36) to (39). Fix m ∈ O, b ∈ ∆ and p ∈ F ∩ A′ such
that f2(p) = b and ord(σ2(b)) = m. Since K(b) ⊆ K(p), by Equation (24) we obtain

m = ord(σ2(b)) ≤ C ′
Rém[K(p) : K]CRém for any b ∈ f2(A′). (41)

By Remark 2.2, the element f1(p) has height bounded by Cheight uniformly. Let us consider conjugation
with respect to the set Σp defined in Equation (21). As explained before Equation (29) and after
Equation (25), we choose δ > 0 small enough such that4

#{a(b,p,τ)0 : τ ∈ Σp} ∩∆′ ≥ 3

4
[K(p) : K] and #{bτ : τ ∈ Σp} ∩∆ ≥ 3

4
[K(p) : K] .

Therefore, we obtain

#{a(b,p,τ)0 : τ ∈ Σp and bτ ∈ ∆} ∩∆′ ≥ 1

2
[K(p) : K] .

We define
J (b,p)
m := {a(b,p,τ)0 : τ ∈ Σp,Ξ,Ξ′} ∩∆′ . (42)

Since the number of the sets Ξi and Ξ′
i is fixed, up to replace b, p with Σp-conjugates b

τ , pτ , we can always
choose compact sets Ξ among the Ξi and Ξ′ among the Ξ′

i such that

b ∈ Ξ, f1(p) ∈ Ξ′ and #J (b,p)
m ≫ [K(p) : K] . (43)

4We are taking conjugates of the field K(p), which may be larger than K(b) and K(f1(p)): some of these conjugates
may coincide but their distribution is preserved.
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Proposition 2.4. Assume that O is infinite. Let us consider m ∈ O and b ∈ ∆ such that ord(σ2(b)) = m.
Let p ∈ F ∩ A′ be such that f2(p) = b. Assume b ∈ Ξ and f1(p) ∈ Ξ′ such that Equation (43) holds. For
any m≫ 1 we have

#J (b,p)
m ≫ m

1
CRém , (44)

where the implicit constant is independent from m, b and p.

Proof. We proceed by contradiction: after choosing a sequence contained in O, for any m there exist
b ∈ Ξ and p ∈ F ∩ A′ with f1(p) ∈ Ξ′ such that

#J (b,p)
m

m
1

CRém

−−−−→
m→∞

0 . (45)

By Equation (41) and Equation (43) we obtain

#J (b,p)
m ≫ [K(p) : K] ≫ m

1
CRém .

Finally we get

#J (b,p)
m

m
1

CRém

≫ 1,

which is a contradiction with Equation (45).

2.2 Proof

All the notations introduced in Equations (19) to (40) will be fixed in the rest of the paper. In order to
get the full proof of Theorem 0.4 it is enough to show that

the set O defined in Equation (34) is bounded, i.e. the orders m ∈ O are uniformly bounded.

In fact, if O is bounded by a uniform constant C, then

{f2(p) : p ∈ F ∩ A′} ⊆ {b ∈ f2(A′) : ord(σ2(b)) ≤ C} ⊆ σ−1
2

 ⋃
N≤C

A2[N ]

 . (46)

Theorem 0.4 follows, since σ2 is non-torsion. We will partition O in two subsets O′ and O′′ and show
that each of them contains a finite number of elements.

2.2.1 First case

For any m ∈ O we consider b ∈ ∆ such that ord(σ2(b)) = m. Let Fb be the Zariski open subset of the
fiber A2,b introduced in Equation (20) and let Tb,δ be the euclidean compact set defined in Equation (29).
Given a point p ∈ F∩A′ such that f2(p) = b we use the notation Equation (35) to denote the σ2-translates
of p and their orders with respect to the f1-group law (namely, pr := p + rσ2(b) and nr := ordf1(pr)).
Let CRém be the constant introduced in Equation (23) and let’s define

O′ :=
{
m ∈ O : ∃b ∈ ∆ and ∃pr ∈ Fb such that nr > mg(2CRém+1)

}
.

We will prove that the set O′ is finite, giving a uniform upper bound for m ∈ O′. We fix

m ∈ O′, b ∈ ∆ with ord(σ2(b)) = m, p ∈ F ∩ A′ with f2(p) = b,

and a point
ζ := pr = p+ rσ2(b) ∈ Fb such that n := nr > mg(2CRém+1), (47)

for some r ∈ {0, . . . ,m− 1}. Up to choosing δ > 0 small enough, we have ζ ∈ Tb,δ.
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Step 1: construction of the conjugates. Consider the abelian scheme X → Fb defined in Equa-
tion (30) and fix z ∈ Fb(C). As explained in Equation (4), there exists a simply connected open set
U ′
z ⊆ Fb(C) in the complex topology containing z where a period map is defined:

P(b)
X =

(
ω
(b)
1,X , . . . , ω

(b)
2g,X

)
.

In other words we have holomorphic functions ω
(b)
i,X : U ′

z → Cg for i = 1, . . . , 2g which fix a basis of the
corresponding lattice Λz′ for each z′ ∈ U ′

z. Thus, the family of open simply connected sets {U ′
z : z ∈ Tb,δ}

is a covering of Tb,δ. Fixing a standard chart U ′
i which contains z, we can consider a simply connected

open definable subset Uz ⊆ U ′
z∩U ′

i which contains z and whose analytic closure Dz is contained in U ′
z∩U ′

i .
In other words, we can consider an open covering {Uz : z ∈ Tb,δ}, where each Uz is a simply connected
open set with the following properties: its analytic closure Dz in the fixed chart of Fb is a definable

compact set in the o-minimal structure Ran,exp and all the period functions ω
(b)
i,X with i = 1, . . . , 2g are

defined as holomorphic functions on Dz. Since Tb,δ is compact, it can be covered with finitely many small
compact simply-connected sets of the type Dz.

Since U ′
z ⊆ Fb(C) is simply connected, we obtain notions of abelian logarithm ℓ

(b)
X and Betti map

β
(b)
X =

(
β
(b)
1,X , . . . , β

(b)
2g,X

)
of the section sX on each U ′

z as explained in Equation (5). Note that the

abelian logarithm is a holomorphic function on each compact set Dz and the Betti map is described by
the equation

ℓ
(b)
X (z) = β

(b)
1,X (z)ω

(b)
1,X (z) + . . .+ β

(b)
2g,X (z)ω

(b)
2g,X (z),

where the Betti coordinates β
(b)
i,X are real-analytic functions on each compact set Dz. In addition note

that β
(b)
X doesn’t have any critical points on Tb,δ by construction (we have expressly removed them).

Summarizing: we have obtained the existence of finitely many simply connected compact sets Di with

i = 1, . . . , Ncomp which are definable in the o-minimal structure Ran,exp and where the Betti map β
(b)
X is

Ran,exp-definable and a submersion.

Remark 2.5. Fix z ∈ Tb,δ. Observe that period functions, logarithms and Betti maps of X → Fb are
uniform with respect to b, since each fiber Xz only depend on the image f1(z). Moreover, the number
Ncomp of compact sets Di’s just constructed can be supposed to be uniform, i.e. constant with respect
to b ∈ ∆: in fact the open covering of the Tb,δ’s given by the open part of the Di’s can be assumed to be
induced (after intersecting with f2-fibers) by a global open covering of the compact set f−1

2 (∆) with the
same properties.

By Equation (32) we have

n
1

CRém ≪ [K(ζ) : K], (48)

where the implicit constant depends only on g and K, which are fixed. Since b lies in the zero locus
of [m] ◦ σ2, the pullback divisor

(
[m] ◦ σ2

)∗
(0) on S2 contains b with some multiplicity eb ≥ 1. As

deg([m]) = m2g, the divisor has total degree ≤ m2g, and hence

eb [K(b) : K] ≤ deg
(
([m] ◦ σ2)∗(0)

)
≤ m2g, (49)

which implies [K(b) : K] ≤ m2g.
Combining (48) and (49) we obtain

d := [K(ζ) : K(b)] =
[K(ζ) : K]

[K(b) : K]
≫ n

1
CRém

m2g
.

Using (47), namely n > m g(2CRém+1), we deduce

d ≫ n
1

CRém
− 2

2CRém+1 = n
1
c0 , where c0 := CRém(2CRém + 1).

Consider the conjugates of ζ over K(b), and call them ζj where j = 1, . . . , d; they are torsion values of
sX , since the section sX is defined over K. As explained after Equation (32), up to choose δ > 0 small
enough, we can assume that the number of these conjugates lying in a same compact set of the type Di

is ≫ d, where the implicit constant depends only on the original data (it can be taken for instance equal
to 1/(2Ncomp) by Remark 2.5). From now on, we will denote by Ωb ⊆ A2,b(C) the compact set (among
the Di’s) just described. Hence, we may assume

#{ζj ∈ Ωb} ≫ n
1
c0 . (50)
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By Equation (37), we decompose the compact set ∆ as a finite union of small definable compact sets Ξj

and we choose a set Ξ among them containing b. We consider the Betti map

β(z) := β(b)(z) := (β
(b)
1,X (z), . . . , β

(b)
2g,X (z)). (51)

The Betti coordinates β
(b)
i,X are real-analytic with respect to the variable z ∈ Ωb and also with respect to

b ∈ Ξ.

Step 2: the definable family. We are going to introduce now a definable family Z ⊂ R4g in terms
of the Betti map β on the auxiliary fibration X → Fb. Consider t = (t1, . . . , t2g) ∈ R2g and the following
R-linear map

t 7→ u(t) :=

2g∑
j=1

tjωj(b) ∈ Cg

which has full rank. Define
[0, 1[2g ∋ t 7→ z(t) := expb(u(t)) ∈ A2,b

where expb here denotes the exponential map of the fiber A2,b. We consider the Ran,exp-definable family
Z, whose fibers are the sets

Zb :=
{
(β(z(t)), t) : t ∈ z−1(Ωb)

}
⊂ R2g × [0, 1[2g , ∀b ∈ Ξ

Recall that Ωb ⊆ A2,b(C) is the precisely compact set containing “many” conjugates of ζ considered
above. Notice that Zb has dimension 2g inside R4g, so it has empty euclidean interior. We denote by
Zalg
b the algebraic part of Zb. Following for instance [44, Definition 1.5], we recall that the algebraic part

Zalg
b , is the union of all connected semialgebraic subsets of Zb of positive dimension (with the standard

notion of dimension in o-minimal geometry).
In this step, we show that the family Zb cannot contain any real-analytic arc that gives rise to algebraic

relations among the Betti coordinates. In particular, this implies that Zalg
b = ∅. Our strategy for proving

this claim is a modification of a standard argument based on the algebraic independence of the logarithm
coordinates with respect to the periods (see, for instance, [35, Lemma 6.2]).

Proposition 2.6. A real-analytic arc γ(s) = (x(s), t(s)) ⊂ Zb, with s ∈ [0, 1], with the following proper-
ties cannot exist:

1. The projection onto the first coordinate x(s) is semi-algebraic.

2. The projection onto the second coordinate t(s) is non-constant.

In particular, Zalg
b is empty.

Proof. Assume by contradiction that such an arc γ does exist. Let Π : Ω → Mat(C, g × 2g) be the
period matrix, and recall that for a chosen branch of the abelian logarithm we have ℓ(w) = Πwβ(w).
Here Π and ℓ are defined on the auxiliary scheme X → Fb, so such periods shouldn’t be confused with
ω1(b), . . . , ω2g(b) fixed above. By the definition of Zb we also have the relation

ℓ(z(t(s)))−Πz(t(s))x(s) = 0 .

By hypothesis, the projection x(s) of γ(s) to its first component is semi-algebraic of real dimension at
most 1. It means that the Betti coordinates βj restricted to this arc all depend algebraically on any of
them, let’s call it βi, via real polynomials Pj . By complexification, and denoting with prj the obvious
projection, it means that there exist non-trivial polynomials Pj ∈ C[U1, U2] for any j = 1, . . . , 2g with
j ̸= i such that

Pj(prj(x(s)),pri(x(s))) = 0 .

Define now the set

Y := {(x, z) ∈ C2g × Ωb : ℓ(z)−Πzx = 0 , Pj(prj(x),pri(x)) = 0 ∀ j ̸= i} ⊂ C2g × Cg.

Note that Y is a complex analytic set. Define a real-analytic arc Γ inside Y by

[0, 1] ∋ s 7−→ Γ(s) := (x(s), z(t(s))) ∈ Y ∩ (R2g × Ωb).
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Let Γ̃(s) := (pr2 ◦ Γ)(s) = z(t(s)). For z ∈ Im Γ̃ we have x(s) = β(z) by construction, hence

Pj(βj(z), βi(z)) = 0 for all z ∈ Im Γ̃. (52)

Since Ωb (and hence each chart Di) together with the maps Π, ℓ, β are definable in the structure Ran,exp,

the holomorphic extension of Γ̃ has definable image. Therefore, the complex-analytic closure of Γ̃ inside
Fb is a definable complex-analytic subset. By the definable Chow theorem this closure is algebraic (see
[42, Theorem 5.1]); denote it by the (irreducible) curve C ⊂ Fb. Since Y is complex analytic, the
relation Equation (52) extends to a eulidean open subset of C. Now restrict the auxiliary abelian scheme
X := A1 ×S1,f1 Fb → Fb and the section sX := σ1 ◦ f1 to the curve C. If all the Betti coordinates
are constant, again by Manin’s kernel theorem, the section σ restricted to C is torsion, and hence
C ⊆ Sdeg contradicting the choice of Ωb. Therefore, we can assume βi to be nonconstant and we can
apply Theorem 1.4 to the family X|C → C with section sX|C : again the curve C would be contained in
Sdeg, which contradicts the choice of Ωb. This contradiction shows that γ cannot exist. In particular,

Zalg
b is empty.

Step 3: Habegger-Pila counting. We need the following height function on Q2g:

H

(
x1
y1
, . . . ,

x2g
y2g

)
:= max

i
{max |xi|, |yi|} . (53)

Moreover, we define

Z∼
b (Q, T ) := {(x, t) ∈ Zb | x ∈ Q2g, H(x) ≤ T} , T ∈ R≥1. (54)

We consider now the points ζj in Equation (50), and we define

Σ := {(β(ζj), ζj) : ζj ∈ Ωb} .

For the properties of the Betti map, each point ζj in Equation (50) gives rise to a rational point β(ζj)
with denominators at most n. Hence, all of these rational points have height ≪ n, say ≤ c1n. This
implies Σ ⊆ Z∼

b (Q, c1n).

Remark 2.7. Let’s explain more in detail why c1 is uniform. Firstly, the denominators of β(ζj) are
bounded. Moreover we can bound the numerators on each compact set Dz, since the Betti map attains
a maximum on each of them. Since the number of compact sets was previously fixed, we can choose
analytic continuation of the Betti map such that the numerators of β(ζj) are bounded uniformly.

Moreover, by Equation (50), we have #pr2(Σ) ≫ n
1
c0 , where the constant depends only on the

involved compact sets, which are fixed. We write

#pr2(Σ) ≥ c2n
1
c0 , for some constant c2 . (55)

On the other hand by the rational-point-counting of Habegger and Pila [23, Corollary 7.2] and Propo-
sition 2.6, for any ε > 0 there exists a constant c(Z, ε) such that

#pr2(Σ) ≤ c(Z, ε)(c1n)
ε, (56)

where the constant is independent from b ∈ Ξ. Taking ε = 1/(2c0) and combining with Equation (55),
we obtain

c2n
1
c0 ≤ #pr2(Σ) ≤ c(Z)(c1n)

1
2c0

where all constants c(Z), c0, c1, c2 are uniform with respect to b ∈ Ξ. This implies n
1

2c0 ≤ c3, that is

n
1

2CRém+1 ≤ c2CRém
3 . In particular, by Equation (47) this implies

m < n
1

g(2CRém+1) ≤ c
2CRém

g

3 .

This estimate holds uniformly with respect to b ∈ Ξ. Since we have a finite number of fixed compact sets
Ξj which cover ∆, we obtain a uniform bound for m ∈ O′.
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2.2.2 Second case

We keep the same notations used in Section 2.2.1. Define

O′′ := {m ∈ O : ∀b ∈ ∆ and ∀pr ∈ Fb we have nr ≤ mg(2CRém+1)} .

We will prove that the set O′′ is finite. Assume by contradiction that it is not finite. We fix

m ∈ O′′, b ∈ ∆ with ord(σ2(b)) = m, p ∈ F ∩ A′ with f2(p) = b.

Therefore, for any r ∈ {0, . . . ,m− 1} we have

pr = p+ rσ2(b) ∈ Fb =⇒ nr ≤ mg(2CRém+1). (57)

We consider again the abelian scheme X → Fb introduced in Equation (20) with the euclidean compact
set in Equation (29). We decompose Tb,δ as a finite union of compact subsets {Di} where periods, abelian
logarithm and Betti map are defined, as in Section 2.2.1. By Equation (37) we decompose ∆ and ∆′ as
a finite union of definable compact sets and we choose compact sets Ξ and Ξ′ among them containing
b and f1(p), respectively. Denote by βσ1

the Betti map of σ1 on S1. We consider the Ran,exp-definable
family Z with fibers

Z ′
b := {(βσ1

(t), t) : t ∈ Ξ′} ⊂ R2g × R2g , ∀b ∈ Ξ .

where by abuse of notation we consider Ξ′ ⊆ R2g via the definable atlas. In the following we use same
height of Equation (53) and the same notation of Equation (54).

Let us consider the set J (b,p)
m introduced in Equation (42), which contains the f1-images of all the

Σp,Ξ,Ξ′ -conjugates of p, and define

Σ′ := {(βσ1(t), t) : t ∈ J (b,p)
m } .

By Equation (57), for the properties of the Betti map, the points βσ1
(t), with t ∈ J (b,p)

m ) are rational
with denominators at most mg(2CRém+1). By Remark 2.7, these points have height ≪ mg(2CRém+1), say
≤ c4m

g(2CRém+1). This implies Σ′ ⊆ Z ′∼
b (Q, c4mg(2CRém+1)). Since we are assuming that O′′ is infinite,

by Proposition 2.4, for any m≫ 1 we have

#pr2(Σ
′) ≥ c5m

1
CRém for some constant c5 , (58)

where pr2 denotes the projection onto the second coordinate and the constant is independent from m, b
and p.

By reasoning exactly as in the previous case it is possible to prove the analogous of Proposition 2.6
for Z ′

b. Hence, by [23, Corollary 7.2], for any ε > 0 there exists a constant c(Z, ε) such that

#pr2(Σ
′) ≤ c(Z, ε)(c4m

g(2CRém+1))ε, (59)

where the constant is independent from b ∈ Ξ. Taking ε < 1
gCRém(2CRém+1) , and combining with Equa-

tion (58), we finally obtain:

m ≤
(
c(Z)cε4
c5

) CRém
1−εgCRém(2CRém+1)

.

This bound holds uniformly on Ξ and Ξ′. Since {Ξj} and {Ξ′
j} are fixed finite covering of ∆ and ∆′

respectively, we get a uniform bound for m ∈ O′′ concluding the proof.

2.3 Some comments on the shape of Z1 and Z2

At the beginning of the proof, we removed some proper Zariski closed subset from the total space A
(see Section 2.1.2). Consequently, those sets fall inside the Zariski closed sets Z1 and Z2 appearing in
Theorem 0.4. Thanks to the previous considerations, we get explicit expressions of Z1 and Z2 as it
follows:

Z1 = Sing1 ∪ E ∪ Ind1 ∪ CRém,1 ∪ S1,deg,

Z2 = Sing2 ∪ Ind2 ∪ CRém,2 ∪ S2,deg ∪ σ−1
2

 ⋃
N≤C

A2[N ]

 ,
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where C is the uniform bound on O (see Equation (46)). Unfortunately the constant C is implicit.
When dimS1 = dimS2 = g = 1, we have S1 = S2 = P1. In this case, we denote both bases simply

by S. Here, the subsets Si,deg are empty for obvious reasons, and the locus f−1
1 (E) can be equivalently

described as a finite union of f2-fibers. The loci CRém,i are empty in this case since we don’t need to use
Faltings height.

Finally, the following proposition shows that in the case 1 = dimS = g all the points of (F\Fund(f2))∩
f−1
1 (Sing1) are contained in a set of the form f−1

2 (Z), where Z is a proper Zariski closed subset of S2. In
other words we recover the stronger result proved in [15], i.e. F\Fund(f2) is contained in a finite number
of f2-fibers (see Remark 0.6).

Proposition 2.8. Let 1 = dimS = g, then there exists a proper closed Zariski subset Z ⊂ S(C) such
that:

(F \ Fund(f2)) ∩ f−1
1 (Sing1) ⊆ f−1

2 (Z).

Proof. Assume that Sing1 has cardinality n and denote by Z1 and Z2 the proper Zariski closed subsets
of S1 and S2 arising from Theorem 0.4, respectively. By Bézout theorem we know that #(A2,s(C) ∩
f−1
1 (Sing1)) ≤ 9n. Let’s put H = (F \ Fund(f2)) ∩ f−1

1 (Sing1) and let’s consider the following partition
of H:

H1 := {p ∈ H : #(O(p)) ≤ 9n}, H2 := {p ∈ H : #(O(p)) > 9n}.

The set f2(H1) is finite, since the following containment holds:

f2(H1) ⊆ σ−1
2

(
9n⋃

N=1

A[N ]

)
.

Fix p ∈ H2. Observe that there exists r ∈ N such that tr2(p) /∈ f−1
1 (Sing1): if not, we would have

a contradiction by the fact that O(p) = {tr2(p) : r ∈ N} ⊆ f−1
1 (Sing1) ∩ A2,s(C) and #(O(p)) > 9n.

Therefore, for such r we have f1(t
r
2(p)) /∈ Z1. Hence, by Theorem 0.4, we get f2(t

r
2(p)) ∈ Z2. Since t2

acts on the f2-fibers, we conclude that f2(t
r
2(p)) = f2(p) ∈ Z2. This proves that f2(H2) ⊆ Z2. The claim

follows if we put Z = Z2 ∪ f2(H1).
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A Construction of double abelian fibrations in the IHS case

by E. Amerik

The purpose of this appendix is to remark that examples of the situation studied in this paper
exist in every even dimension, and to provide some explicit constructions, as well as indications how to
prove abstract existence results in a case which has been extensively studied by geometers. The general
framework is as follows. We consider an irreducible holomorphically symplectic (IHS) manifold
X, that is, a simply-connected manifold X such that H0(X,Ω2

X) is one-dimensional and generated by
a nowhere degenerate form σ. We can take X projective, or more generally compact Kähler (in the
situation we are looking for, projectivity shall be automatic). A typical example of such a manifold is a
K3 surface S, or, more generally, the n-th punctual Hilbert scheme S[n], parameterizing subschemes of S
of finite length n. In all explicit examples, we shall be dealing with S[n], but the general results are valid
in the general IHS context.

It is well-known that on the second cohomologyH2(X,Z) there is an integral non-degenerate quadratic
form q, called the Beauville-Bogomolov form, which can be seen as an analogue of the intersection form
on a surface. If X → B is a fibration, then the inverse image of an ample line bundle on B is nef and
q-isotropic. Conversely, a famous “Lagrangian”, or “hyperkähler SYZ”, conjecture, checked in all known
examples, in particular for S[n], states that if L is a nef line bundle on X with q(L) = 0, then some power
of L is base-point-free, so that its sections define a fibration ϕ = ϕL : X → B. Matsushita [36] proved
that a non-trivial fibration on an IHS manifold is equidimensional, and all smooth fibers are lagrangian
tori. In particular, if ϕ has a section, one obtains a family of abelian varieties on an open subset of X,
say ϕ0 : X0 → B0.

Oguiso ([40]) proved that the Picard number of the generic fiber of such a fibration is always equal
to one. In particular, the generic fiber is simple, so that the family does not have a fixed part as soon as
it is not isotrivial. In fact it is easy to deduce from [9] or [6] that no finite base-change of ϕ0 has a fixed
part unless the family is isotrivial.

By the same reason, the multiples of any non-torsion section or multisection of a family of abelian
varieties arising in this way must be Zariski-dense.

If f is an automorphism of X such that its action on H2(X,Z) preserves the class of L as above, then
a power of f preserves the fibration ϕL : X → B ([30]) and acts on the smooth fibers as a translation
([6]). There is a way to say whether an automorphism ψ of the Neron-Severi lattice NS(X) ⊂ H2(X,Z)
preserving the class of L comes from an actual automorphism f : X → X, see “Hodge-theoretic Torelli
theorem” by Markman, [32]: it should belong to the (Hodge) monodromy group5, and it should take
some ample class to an ample class. The Hodge monodromy group is of finite index in the automorphism
group of (NS(X), q), so replacing any ψ by a power we may assume it is in there. The ample cone is
governed by so-called MBM classes, a higher-dimensional analogue of (−2)-classes on K3 surfaces ([2],
[3]). These are primitive classes in H2(X,Z) of bounded negative square ([4]). Inside the cone of classes
of positive square in NS(X) ⊗ R, the ample cone is a connected component of the complement to the
union of the orthogonal hyperplanes to the MBM classes of Hodge type (1, 1). On all known examples
of IHS manifolds, in particular on S[n], these classes can be described explicitely. If no MBM class is
orthogonal to L in (NS(X), q), then, up to taking a power, an automorphism of the lattice which fixes
L lifts to an automorphism of X: indeed the image of an ample class near L in NS(X) ⊗ Q shall be
ample, so this is a consequence of Hodge-theoretic Torelli. The automorphisms preserving L, up to a
finite index, form a free abelian group of rank ρ− 2, where ρ is the Picard number of X (we assume here
that ρ ≥ 3, then the statement is obtained from hyperbolic geometry, see [6]). If there are such MBM
classes but not too many, some automorphisms may lift, see e.g. [37]: one has to further subtract from
ρ−2 the dimension of the subspace they generate. Such automorphisms are sometimes called parabolic.

Let us start with the following explicit example. Let S be a smooth quartic surface in P3 (it is, of
course, a K3 surface). It is well-known and easy to see that S can contain only finitely many (complex)
lines, so if S is defined over a number field, then the lines are defined over a (possibly larger) number field
too. Assume S contains a line l. Take all planes through l, it is a pencil of planes (they are parameterized
by P1). For each such plane Pt, the intersection with S is l ∪ Ct, where Ct is a plane cubic. This gives
a fibration ϕ : S → P1 where the smooth fibers are curves of genus 1. The line l induces a multisection:
indeed l intersects each Ct in three points. So it is a trisection.

5The monodromy group is the group of automorphisms of H2(X,Z) generated by all parallel transports in families, and
the Hodge monodromy group is the image of its Hodge type-preserving subgroup in the group of automorphisms of the
Neron-Severi lattice.

24



If S contains another line l′, which does not intersect l (this is possible, e.g. on a Fermat surface, but
also on others - in fact over a codimension-two subvariety of the parameter space for quartic surfaces),
this gives a section of ϕ, indeed each Pt and hence each Ct intersects l

′ at one point. In its turn, taking
the pencil of planes P ′

t through l′, we obtain another fibration of S, ϕ′ : S → P1, with genus one fibers C ′
t

residual to l′ in the intersection of S and P ′
t , a section induced by l, and a trisection induced by l′ itself.

On the resulting abelian schemes, these trisections are non-torsion, see e.g. [24] where it is explained
that a torsion multisection of an elliptic fibration of a K3 surface cannot be a rational curve. One can
also choose S in such a way that it contains an additional line m skew to both l and l′: it shall induce
an additional section of both fibrations. Keeping in mind the general theory of automorphisms of IHS
manifolds and MBM classes, one may also produce non-torsion sections on S as follows.

Proposition A.1. If S is general with the above properties, then S admits an automorphism h of infinite
order preserving ϕ and acting as a translation along its fibers.

Proof. For such an S, the lattice NS(X) is of rank 3, generated by the classes H (the hyperplane section
class), l and l′, and the class L of Ct is H − l. The orthogonal complement to L is generated by L itself
and H − 3l′, which has square −20. Hence there are no MBM classes in the orthogonal complement to
L: indeed these have square −2. So the result follows from Hodge-theoretic Torelli.

We derive in particular that S also has a non-torsion section h(l′) of ϕ. The same applies to ϕ′ (with
L′ = H − l′) and gives a non-torsion section h′(l).

Consider now the k-th punctual Hilbert scheme S[k] of a K3 surface S: it parameterizes subschemes
of S of length k, e. g. k-ples of distinct points, or of not necessarily distinct points with some extra
structure. It is often viewed as a resolution of singularities of the k-th symmetric power of S. Any
fibration g : S → P1 naturally induces the fibration g[k] : S[k] → Pk = Symk(P1). The fiber over a point
t1+ · · ·+tk (where the ti are distinct points on the projective line) is just the product Ct1×Ct2×· · ·×Ctk .
So this is a fibration where the fibers over an open subset of the base are k-dimensional tori. Any section
s of g naturally induces a section s[k] of g[k], and non-torsion induces non-torsion.

We are now in a position to give explicit examples of the situation considered in the paper.

Theorem A.2. For each k ≥ 1 there exist algebraic varieties X of dimension 2k with two fibrations ϕ
and ϕ′ from X to Pk, such that ϕ resp. ϕ′ induces an abelian scheme structure without a fixed part on
an open subset U resp. U ′ of X. Each of these fibrations has an extra non-torsion section. Moreover the
multiples of these sections are Zariski-dense in U , U ′.

Proof. Take S a quartic in P3 containing two skew lines l and l′, inducing fibrations ϕ and ϕ′, and consider
ϕ[k] and ϕ′[k] on X = S[k].

Another, maybe slightly less well-known construction is as follows, see [25]. Take S a complete
intersection of three quadrics in P5. This is again a K3 surface. We can arrange for S to contain a rational
normal cubic C and to contain no lines. Let H be a hyperplane section divisor, then (H − C)2 = 0,
so curves residual to C in a hyperplane section are of square zero and genus one, this gives a fibration
of S, and C induces a multisection of degree 5. Lift this fibration to S[2] as before, call it ϕ. Remark
that a point of S[2] is either a pair of distinct points of S or a point together with a tangent direction.
Through each pair of points of S, or a point with a tangent direction, there is a unique line l, and it
does not intersect S at any extra points (indeed, since S is an intersection of quadrics, the line would be
contained in S otherwise). The quadrics containing S are parameterized by a projective plane P(V ), and
those among them which contain l, by a line in this plane, so we have a natural map from S[2] to the dual
projective plane P(V ∗), and a fiber is naturally identified to the set of lines contained in the intersection
of two quadrics, known to be an abelian surface generically (when this intersection is smooth), see e.g.
[46]. So we have another fibration called ϕ′.

Proposition A.3. The curve C [2] viewed as a subvariety of S[2] induces a (possibly rational6) section of
ϕ′.

Proof. Indeed the intersection of two sufficiently general quadrics from P(V ) and the projective space P3

generated by C is a union of C and one of its secant lines l, so that C ∩ l gives a distinguished point in
each fiber of ϕ′.

6By a rational section we mean a section defined over a dense open subset of the base.
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Note, though, that the first fibration does not have a natural section arizing from this geometric
construction. However one can impose a section, e.g. by requiring S to contain another rational normal
cubic C ′ intersecting C at two points: then C ′ induces a section of ϕ and C [2] induces a section of ϕ[2].
One may remark that there is also an abstract existence result, which follows from the Torelli theorem for
K3 surfaces and Nikulin’s results on lattice embedding: for any nondegenerate even lattice Λ of signature
(1, ρ− 1), ρ ≤ 10, there exists a K3 surface with Neron-Severi group Λ (see [38]).

Once two fibrations are constructed, the existence of parabolic automorphisms preserving each one
can be deduced in the same way as in Proposition 1: indeed the description of the Neron-Severi group
and of the MBM classes on S[2] is well-known (the latter are the classes of square −2 and those classes
of square −10 which have even pairing with all other classes in H2(S[2],Z), see [26] for statements, [5]
for an easy proof). We check the existence of a parabolic automorphism preserving ϕ on S, and of a
parabolic automorphism preserving ϕ′ on S[2]. The details are left to the reader.

As a final remark, let us mention that many more examples can be constructed in an “abstract” way,
by choosing a convenient lattice Λ of low rank (but at least three), so that there is an IHS manifold of
one of the four known deformation types (e.g. deformation equivalent to the Hilbert scheme of a K3
surface) X with Neron-Severi lattice Λ. As the description of the MBM classes is available, by choosing
the lattice carefully it is possible to arrange for two Beauville-Bogomolov isotropic nef classes with no,
or few, orthogonal MBM classes. Since the Lagrangian conjecture is verified, this gives two lagrangian
fibrations ϕ, ϕ′, and by Hodge-theoretic Torelli, two groups of parabolic automorphisms P resp. P ′

preserving each. One then may study the locus of points with finite orbit with respect to the group
generated by some f ∈ P and f ′ ∈ P ′.

Note also that IHS manifolds with two transversal lagrangian fibrations have been constructed in [28];
as the ambient space there has Picard rank two, there are no automorphisms which are interesting for
us, but a suitable modification of the construction could certainly yield some. The construction of [28] is
entirely based on the Torelli theorem, so it is not explicit.
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