Sheet 3: differentiability and directional derivatives

April 7, 2024

1. Let $U \subseteq \mathbb{R}^{n}$ be an open set, let $\xi \in U$, and consider a function $f: U \rightarrow \mathbb{R}$ satisfying the property described below. For every $v \in \mathbb{R}^{n}$ and every curve $\left.\gamma:\right]-\varepsilon, \varepsilon\left[\rightarrow \mathbb{R}^{n}\right.$ such that $\gamma(0)=\xi$ and $\gamma^{\prime}(0)=v$, the composition $\left.(f \circ \gamma):\right]-\varepsilon, \varepsilon\left[\rightarrow \mathbb{R}\right.$ satisfies $(f \circ \gamma)^{\prime}(0)=L(v)$, where $L: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is fixed linear map. Prove that f is differentiable at ξ.
2. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined in the following way ${ }^{1}$:

$$
f(x, y)= \begin{cases}\frac{y^{3}}{x^{2}+y^{2}} & (x, y) \neq 0 \\ 0 & (x, y)=0\end{cases}
$$

(a) Show that f is continuous on its domain.
(b) Show that for any curve γ : $]-\varepsilon, \varepsilon\left[\rightarrow \mathbb{R}^{2}\right.$ such that $\gamma(0)=0$ and $\gamma^{\prime}(0) \neq 0$ the compositon $f \circ \gamma$ is derivable at 0 .
(c) Compare the item 2.b with the exercise 1 . Why cannot we apply exercise 1 . to conclude that f is differentiable at $(0,0)$?
(d) Compute the directional derivative of f along any direction $(h, k) \in \mathbb{R}^{2} \backslash(0,0)$ and compare the result with the item 2.b. What is then the geometrical interpretation of the derivative $f \circ \gamma$?
3. Determine whether the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

$$
f(x, y)= \begin{cases}\frac{x y^{2}}{x^{2}+y^{2}} & (x, y) \neq 0 \\ 0 & (x, y)=0\end{cases}
$$

is continuous on its domain.
4. Let X, Y be two normed vector spaces and let $U \subseteq X$ be an open set. Prove that a function $f: U \rightarrow Y$ is in $\mathcal{C}^{1}(U, Y)$ if and only if the partial derivatives of f exist and are conitnuous in U^{2}.
5. Show that the following function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable on its domain:

$$
f(x, y)= \begin{cases}x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}} & (x, y) \neq 0 \\ 0 & (x, y)=0\end{cases}
$$

[^0]
[^0]: ${ }^{1}$ Recall that we proved during the lectures that such function is not differentiable at $(0,0)$
 ${ }^{2}$ During the lectures we only showed that the existence and the continuity of the partial derivatives imply the differentiability.

