Sheet 3: differentiability and directional derivatives

April 7, 2024

1. Let $U \subseteq \mathbb{R}^n$ be an open set, let $\xi \in U$, and consider a function $f: U \to \mathbb{R}$ satisfying the property described below. For every $v \in \mathbb{R}^n$ and every curve $\gamma:] - \varepsilon, \varepsilon[\to \mathbb{R}^n$ such that $\gamma(0) = \xi$ and $\gamma'(0) = v$, the composition $(f \circ \gamma):] - \varepsilon, \varepsilon[\to \mathbb{R}$ satisfies $(f \circ \gamma)'(0) = L(v)$, where $L: \mathbb{R}^n \to \mathbb{R}$ is fixed linear map. Prove that f is differentiable at ξ .

2. Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ defined in the following way¹.:

$$f(x,y) = \begin{cases} \frac{y^3}{x^2 + y^2} & (x,y) \neq 0\\ 0 & (x,y) = 0 \end{cases}$$

- (a) Show that f is continuous on its domain.
- (b) Show that for any curve $\gamma:] \varepsilon, \varepsilon [\rightarrow \mathbb{R}^2$ such that $\gamma(0) = 0$ and $\gamma'(0) \neq 0$ the compositon $f \circ \gamma$ is derivable at 0.
- (c) Compare the item 2.b with the exercise 1. Why cannot we apply exercise 1. to conclude that f is differentiable at (0,0)?
- (d) Compute the directional derivative of f along any direction $(h, k) \in \mathbb{R}^2 \setminus (0, 0)$ and compare the result with the item 2.b. What is then the geometrical interpretation of the derivative $f \circ \gamma$?
- **3.** Determine whether the function $f : \mathbb{R}^2 \to \mathbb{R}$

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & (x,y) \neq 0\\ 0 & (x,y) = 0 \end{cases}$$

is continuous on its domain.

4. Let X, Y be two normed vector spaces and let $U \subseteq X$ be an open set. Prove that a function $f: U \to Y$ is in $\mathcal{C}^1(U, Y)$ if and only if the partial derivatives of f exist and are continuous in U^2 .

5. Show that the following function $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable on its domain:

$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq 0\\ 0 & (x,y) = 0 \end{cases}$$

¹Recall that we proved during the lectures that such function is not differentiable at (0,0)

²During the lectures we only showed that the existence and the continuity of the partial derivatives imply the differentiability.