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Abstract

Consider two families of g-dimensional abelian varieties induced by two distinct rational maps on
the same variety A onto two bases S1 and S2 and having big common domain of definition. Two non-
torsion sections of these families induce two (birational) fiberwise translations on A, respectively. We
show that if dimS1 +dimS2 ≤ 2g, the points with finite orbit under the action of a certain subset of
the group generated by both translations lie in a proper Zariski closed subset that can be described to
a certain extent. Our work is a higher dimensional generalization of a result of Corvaja, Tsimermann
and Zannier.

0 Introduction

In the theory of unlikely intersections many interesting problems emerge when on an algebraic family of
abelian varieties we consider the intersection between (the image of) a non-torsion section with the union
of the N -torsion subschemes for N ∈ N. Thanks to the work of André, Corvaja, Masser and Zannier in
[8, 2, 10, 30], which exploits the properties of Betti map, we have now acquired a powerful systematic
approach for the study of such particular unlikely intersection problems; even though the first indirect
appearance of the Betti map in Diophantine problems dates back to Manin in [18]. Several important
results have been proved on the back of such ideas. Of exceptional interest are the recent developments
in [15, 7, 16, 12] on the geometric Bogomolov conjecture, the relative Manin-Mumford conjecture, and
the uniform Mordell-Lang conjecture.

In the case of elliptic surfaces, Corvaja, Tsimerman and Zannier in [9] consider a related dynamical
point of view: they take two dynamical systems defined by the fiberwise translations induced by two
distinct sections, and they are able to find a proper Zariski closed subset which contains all the points
which have finite orbit under the action of the group generated by both translations. Moreover, still in
[9], they study some interesting applications. We mention that for a different perspective and related
results on finite orbits of automorphisms of projective surfaces, the reader can check the article [6] of
Cantat and Dujardin.

In the present paper we propose a generalization of [9] for families of g dimensional abelian varietes
over a base of dimension at most g. In order to get the proof of our main result we also prove new
auxiliary propositions which seem to be of independent interest and herald of potential applications.
Let’s now give a detailed account of our work.
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General notations. We assume that all algebraic varieties and morphisms are defined over Q. An
algebraic point p of a variety X will be simply denoted as p ∈ X (or sometimes more explicitly as
p ∈ X(Q)) and in general we don’t make use of schematic points. Moreover, we denote with X(C) the
analytification of X, which clearly carries the topology of complex manifold. With dimX we denote the
dimension of X as complex manifold. In several proofs we need to deal with many real positive constants
that in general are allocated inside some variables (denoted usually with C, c0, c1, . . .). Our main conven-
tion is that these variables are “local in the paper”, in the sense that their value/meaning holds only in
the proof in which they are used, if not otherwise specified. In this paper we make use of concepts com-
ing from transcendental Diophantine problems like: of o-minimal structures, definable sets and definable
families, so for the main definitions and properties we remand the reader to the seminal works [25] and [24].

Let S be a smooth, irreducible projective variety and let f : A → S be a family of abelian varieties
with a section i.e. a proper flat morphism of finite type such that A is a smooth variety and the generic
fiber is an abelian variety of dimension g over Q(S) with a rational point. After removing the singular
fibers and their images we obtain a g-dimensional abelian scheme f : A → S (the fiberwise group law
extends uniquely to a global map that gives the structure of abelian scheme over S, see [22, Theorem
6.14]). The set of N -torsion points of A is denoted by A[N ], and moreover we put Ator =

⋃
N≥1 A[N ].

We assume the existence of a non-torsion section σ : S → A of f (i.e. the image of σ is not contained in
any A[N ]) and that Zσ is Zariski dense in A. We define the following automorphism:

tσ : A(C) → A(C)
p 7→ p+ σ(f(p)).

Let Γσ be the group generated by tσ that acts naturally on A(C), for any p ∈ A(C) we are interested in
the orbit

Γσ(p) := {trσ(p) : r ∈ N} .

Clearly each orbit is contained in a single fiber of f , but it is important to study whether the locus F(1)

of points p ∈ A(C) such that Γσ(p) is finite can be confined in a subset lying over a proper closed subset
of the base. We recall that a torsion value of σ is an element of σ−1(Ator) and obviously Γσ(p) is finite
if and only if f(p) is a torsion value. Therefore, such study of F(1) can be reduced to the study of the
Zariski density of the torsion values of σ. But the last property depends on the values of dimS and g in
the following way: if dimS ≥ g then σ−1(Ator) is Zariski dense in S if and only if the rank of the Betti
map βσ is 2g (see [16, Theorem 1.3]). Note that [2, Proposition 2.1.1] shows that rkR βσ ≥ 2g implies
that σ−1(Ator) is dense in S(C) with respect to the analytic topology. On the other hand if dimS < g
then σ−1(Ator) is not Zariski dense in S. This is a special case of the relative Manin-Mumford conjecture
that has been recently proved in [16, Theorem 1.1].

We are interested in a variation of the above problem in the case of a variety A endowed with a double
abelian rational fibration: there exists two surjective rational maps f1 : A 99K S1 and f2 : A 99K S2 such
that the induced morphisms are families of abelian varieties with zero sections; in particular, for each of
them the generic fiber is an abelian variety over kS1

:= Q(S1) and kS2
:= Q(S2) respectively. We always

denote by fi the restrictions of the introduced rational maps to families of abelian varieties and abelian
schemes: precisely, after removing the loci where f1 and f2 are not defined, we get two families of abelian
varieties fi : Ai → Si; moreover, after removing the respective singular fibers and discriminant loci we
obtain two abelian schemes fi : Ai → Si. We assume the existence of non-torsion sections σi : Si → Ai

of fi. In addition we impose the following rather standard conditions on these abelian schemes:

1) The two abelian families are “distinct”, in the sense that their common fibers (if any) lie over a
proper Zariski closed subset E either of S1 or of S2.

2) The intersection A1 ∩ A2 is a 2g-dimensional variety.

3) Zσi is Zariski dense in Ai.

4) The abelian schemes Ai → Si have no fixed part, i.e. the respective generic fibers have trivial
kSi

/Q-trace.

The fiber of a point s ∈ Si(C) with respect to the morphism fi will be denoted by Ai,s and the
discriminant locus of fi is ∆i = Si \ Si. We denote with βi the Betti map associated to the section σi.
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There exists unique birational transformations ti of A(C) acting by translation along the general fiber of
fi and mapping the zero section to σi:

ti : A(C) 99K A(C)
p 7→ p+ σi(fi(p)).

We study the action of the subgroup Γσ1,σ2 := ⟨t1, t2⟩ generated by t1 and t2 in the group of birational
transformations Bir(A(C)); in particular we want to confine the points with finite orbits. First of all,
since t1 and t2 are not defined everywhere on A(C) we have to be careful with the notion of orbit. For
p ∈ A(C) we put:

Γσ1,σ2
(p) := {γ(p) : γ ∈ Γσ1,σ2

and γ(p) is well defined at p} .

In fact, we shall focus on a subset of the orbit showing that already the points with finite orbits under
the action of a “small subset” of Γσ1,σ2

lie in a proper Zariski closed subset of A(C). This small subset
of Γσ1,σ2

will be precisely the following:

O = Oσ1,σ2
:= {tr11 ◦ tr22 : r1, r2 ∈ N} .

For any p ∈ A(C) we clearly have O(p) ⊆ Γσ1,σ2(p) and moreover we define

F = F(2) := {p ∈ A(C) : O(p) is finite}.

We adopt the convention that points where the rational map f2 is undefined are not points with finite
orbit. Therefore, we forget about them in counting points of F.

Remark 0.1. Note that if p ∈ F then both f1(p) and f2(p) are torsion values for the relative sections,
and in particular p ∈ A(Q). In other words F is contained in the intersection between the f1-fibers and
the f2-fibers of the torsion values, which form a dense subset of A.

The case g = 1 has been already treated in [9, Theorem 1.1] where it is shown that F lies over finitely
many fibers of f2. The following theorem is the main result of this paper and generalizes [9, Theorem
1.1]:

Theorem 0.2. Let f1 : A 99K S1 and f2 : A 99K S2 be a double abelian rational fibration of the variety
A satisfying the above conditions 1) − 4). If dimS1 + dimS2 ≤ 2g, then there exist two proper Zariski
closed subsets Z1 ⊂ S1(C) and Z2 ⊂ S2(C) such that

F ⊆ f−1
1 (Z1) ∪ f−1

2 (Z2) . (1)

Our result can be seen as a generalization of the relative Manin-Mumford claim for sections in the
following way: in the case of a single family of abelian varieties [16, Theorem 1.1] says that the relative
locus F(1) is not Zariski dense for dimS ≤ g−1. On the other hand, in the case of two families of abelian
varieties with same base S, Theorem 0.2 implies that F(2) is not Zariski dense for dimS ≤ g.

Remark 0.3. If any of the sets σ−1
i (Ai,tor) is not Zariski dense then the theorem is obviously true thanks

to Remark 0.1. Therefore if either dimS1 < g or dimS2 < g then Theorem 0.2 follows directly from [16,
Theorem 1.1]. For the same reason, thanks to [16, Theorem 1.3] we can restrict ourselves to prove just
the case:

2 dimS1 = 2dimS2 = 2g = rkR β1 = rkR β2 . (2)

Observe that Equation (2) is crucial for the application of the so called “height inequality” of [12, Theorem
1.6] that relates the projective height of the base to the fiberwise Neron-Tate height. In our proof this
result appears several times, and on different abelian schemes, to ensure that the height of “most of” the
torsion values can be uniformly bounded. On the other hand, it is well known that the height inequality
fails in general without assumptions on the rank of the Betti map. See also [29, Theorem 5.3.5] for a
generalization of height inequality which nevertheless requires the same hypotheses in the case of abelian
schemes.

Remark 0.4. At first glance it might seem that in the case 1 = dimS1 = dimS2 = g, Theorem 0.2 is
slightly weaker than [9, Theorem 1.1] where the claim is just F ⊆ f−1

2 (Z) for a proper closed subset Z.
However, Proposition 2.7 shows that the two statements are actually equivalent.
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Remark 0.5. Let Z be a Zariski closed subset of A which is not horizontal with respect to either f1 or
f2 (i.e. either f1(Z) ̸= S1 or f2(Z) ̸= S2). If Theorem 0.2 holds for F ∩ (A \ Z), then it also holds for F.
This follows from the fact that the morphisms f1 and f2 are proper: if fi(Z) ̸= Si for any i = 1, 2 then
the points with finite orbit inside Z lie in f−1

i (fi(Z)) and fi(Z) is closed.

Our proof follows the same general strategy employed in the low dimensional situation of [9]: after
some preliminary considerations we are eventually reduced to show that the points of the type σ2(b)
for b ∈ f2(F) have uniformly bounded torsion order. Denote this order with m := m(b), then by using
the properties of the Betti map we are able to see a collection of conjugates of certain torsion values as
rational points inside a definable family of R2g ×R2g in the sense of [25]. Some considerations that relate
the Weil heights, the torsion orders and the conjugates of algebraic points allow us to give a lower bound
on the number of such rational points and an upper bound on their height. The crucial point is that
these bounds depend on m. On the other hand, the result [25, Theorem 1.9] of Pila and Wilkie gives an
upper bound on the number of rational points with bounded height of the transcendental part of such
definable family. But, after using the independence result [1, Theorem 3] of André we prove that the
definable family has actually empty algebraic part. It means that we can compare the aforementioned
bounds on the number of rational points and deduce a uniform upper bound for m.

Albeit, our higher dimensional setting unravels several subtle complications as opposed to [9]. Below
we summarize the new technical ingredients introduced in this paper:

(i) The height inequality of Dimitrov, Gao and Habegger gives a uniform height bound only for the
torsion values contained in an open dense subset (see Corollary 1.4). Note that when the base is a curve
there is no problem because having a uniform bound on a Zariski open dense subset is clearly equivalent
to a uniform bound for all torsion values. Therefore, in each step of our proof we have to be very careful
in keeping track of the closed subset excluded by the height inequality. In addition, we need to apply
the height inequality to an abelian scheme having a f2-fiber as base, thus the open dense subset with
uniformly bounded height is not closed with respect to the sum (of the base). We fix this issue by
considering some ad hoc arguments involving the properties of Néron-Tate height.

(ii) We need an upper bound on the torsion order of (the image of) torsion values that depends only
on the heights and the degree of the points. Thus we prove the following:

Proposition 0.6 (See Proposition 1.7). Let f : A → S be a g-dimensional abelian scheme (induced by a
morphism of varieties) admitting a non-torsion section σ : S → A. Let K be the field of definition of S,
let s be a torsion value for σ and put d(s) := [K(s) : Q]. Then there exists real constant C = C(g) (so
independent from the point s) such that

ord(σ(s)) ≤
(
(14g)64g

2

d(s)max (1, h(s) + C, log d(s))
2
) 35840g3

16

.

The proof is a combination of a similar result for abelian varieties due to Rémond in [27]1 with some
modular properties of the Faltings height.

(iii) We prove the following result which is essential in several steps of the proof of Theorem 0.2:

Proposition 0.7 (See Proposition 1.10). Let’s fix the following data: X is a projective variety; B is
a closed subvariety of X; K is a number field containing the fields of definition of X and B. Given a
real constant a > 0, there exists a real constant δ = δ(K, a) > 0 with the following property: for any
α ∈ X(Q) \ B(C) with h(α) ≤ a, there are at least 1

2 [K(α) : K] different K-embeddings τ : K(α) ↪→ C
such that ατ lies in Cδ.

Roughly speaking it says that fixed a uniform constant C and a subvariety B, there is a lower bound
on the number of Galois conjugates, that don’t lie “near” B, of a point α /∈ B having height at most C;
where the important fact is that such bound should depend only on the degree of α. It is a generalization
of a well known result for P1, appeared in several articles of Masser and Zannier (precisely cited in the
main text) and which turned out to be very useful for proving some results of Zilber-Pink type. This
tool seems to be very interesting since it allows to move torsion points in a “comfort zone” of the variety,
where many arguments can be carried on with enough uniformity.

(iv) In the proof of Theorem 0.2 we need to remove a Zariski closed subset from each f2-fiber, but
it must be shown that it is possible to do it “with no harm”. In other words we need to rule out the
occurrence that “too many” points of the type tr2(p) lie in this closed subset. In [9] this can be done
rather easily since the proper closed sets of the fibers are made of finitely many points, so it is possible

1We mention that Masser and Zannier obtained also a similar, but less sharp, bound in [21].
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to encircle each of them with an arbitrarily small open disk. On the other hand, in the general case the
intersection is higher dimensional, hence we need more sophisticated techniques (see Section 2.1.2).

Finally, we point out that the present work motivates the following very natural question that might
be addressed with similar techniques:

Question 0.8. What is a generalization of Theorem 0.2 in the case of n > 2 abelian rational fibrations
fi : A 99K Si, for i = 1, . . . , n? In particular, what is the best relationship between the dimension of the
bases and g in this case?

The outline of the paper is the following: in Section 1 we collect the preliminary results, whereas the
full proof of Theorem 0.2 is carried out in Section 2. The same section contains also a description of the
Zariski closed subsets Z1 and Z2 that confine the fibers containing the points with finite orbit.

Acknowledgements Both authors express their gratitude to G. Dill, D. Masser and R. Pengo for
their useful replies to some questions they were asked during the drafting of the present paper.

1 Auxiliary results

In this section we present all the tools needed for the proof of Theorem 0.2. We describe the results in
the most general setting, so for each topic we need to reshape the notations.

1.1 Betti map

Let S be a smooth, irreducible quasi-projective variety and let f : A → S be an abelian scheme of relative
dimension g ≥ 1 with “a zero section” σ0. Moreover we assume that σ : S → A is a non-torsion section.
Each fiber As(C) is analytically isomorphic to a complex torus Cg/Λs and for any subset T ⊆ S(C) we
denote ΛT :=

⊔
s∈T Λs. The space Lie(A) :=

⊔
s∈S(C) Lie(As) has a natural structure of g-dimensional

holomorphic vector bundle π : Lie(A) → S(C) (it is actually a complex Lie algebra bundle). By using the
fiberwise exponential maps one can define a global map exp: Lie(A) → A. Let Σ0 ⊂ A be the image of
the zero section of the abelian scheme, then obviously exp−1(Σ0) = ΛS(C). Clearly S(C) can be covered
by finitely many open simply connected subsets where the holomorphic vector bundle π : Lie(A) → S(C)
trivializes. Let U ⊆ S(C) be any of such subsets and consider the induced holomorphic map π : ΛU → U ;
it is actually a fiber bundle with structure group GL(n,Z). Since U is simply connected, by [11, Lemma
4.7] we conclude that π : ΛU → U is a topologically trivial fiber bundle. Thus we can find 2g continuous
sections of π:

ωi : U → ΛU , i = 1, . . . 2g (3)

such that {ω1(s), . . . , ω2g(s)} is a set of periods for Λs for any s ∈ U . Since ΛU ⊆ Lie(A)|U , we can put
periods into the following commutative diagram:

Lie(A)|U

S(C) ⊃ U A|U ,

exp|U

σ0|U

ωi

where σ0 is the zero section. Since σ0 is holomorphic and exp is a local biolomorphism, then the period
functions defined in Equation (3) are holomorphic. The map P = (ω1, . . . , ω2g) is called a period map;
roughly speaking it selects a Z-basis for Λs which varies holomorphically for s ∈ U . The set U ⊆ S(C) is
simply connected therefore we can choose a holomorphic lifting ℓσ : U → Lie(A) of the restriction σ|U ;
ℓσ is often called an abelian logarithm. Thus for any s ∈ U we can write uniquely

ℓσ(s) = β1(s)ω1(s) + . . .+ β2gω2g(s) (4)

where βi : U → R is a real analytic function for i = 1, . . . , 2g. The map βσ : U → R2g defined as
βσ = (β1, . . . , β2g) is called the Betti map associated to the section σ, whereas the βi’s are the Betti
coordinates. Observe that the Betti map depends both on the choice of period map P and on the abelian
logarithm ℓσ, but this is irrelevant for our applications. The main feature of the Betti map is that
βσ(s) ∈ Q2g if and only if s is a torsion value of σ, so it allows us to treat the study of the torsion values
of an abelian scheme as a transcendental Diophantine problem. Note that we need a non-torsion section
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σ otherwise βσ would be obviously constant and equal to a rational point. Viceversa, we recall that as a
consequence of Manin’s “theorem of the kernel” (see [18] or [4]) if βσ is locally constant then σ is torsion.
Moreover, the fibers of βσ are complex submanifolds of S(C) (see [8, Proposition 2.1] or [2, Section 4.2]).

Remark 1.1. There exists a compact subset D ⊆ U such that the Betti map βσ restricted to D is
definable in the o-minimal structure Ran (using the real charts). This follows for instance by using [23,
Fact 4.3] and the fact that for i = 1, . . . , 2g we have βi = πi ◦ ℓσ, where πi is the projection on the i-th
coordinate with respect to the period map.

The rank, in the sense of real differential geometry, of the Betti map at a point s is denoted by
rkR βσ(s). It can be shown that it depends only on the point s (see for instance [2, Section 4.2.1] or [14,
Section 4]). Moreover we define

rkR βσ = max
s∈S(C)

rkR βσ(s) (5)

and note that it obviously holds that rkR βσ ≤ 2min(g,dimS). We call a section σ : S(C) → A(C)
non-degenerate if rkβσ = 2dimS. The following crucial proposition allows us to have a uniform control
on the fibers of the Betti map, under certain conditions.

Proposition 1.2. Let 2 dimS = 2g = rkR βσ. There exist a non-empty Zariski open set U of S(C) such
that: for any x ∈ U there is a compact subanalytic set D ⊆ S(C) containing x and a constant c = c(D)
such that the Betti map βσ : D → R2g has finite fibers of cardinality at most c.

Proof. From the condition on the rank of the Betti map it follows immediately that there exists a non-
empty Zariski open set U ⊆ S(C) on which βσ is a submersion. Pick any compact subanalytic D inside U
and contained in a chart. Restrict the Betti map on D and identify the latter with an euclidean compact
in R2g. Since βσ is now a submersion, the fibers must have real codimension equal to 2g (see for instance
[17, Corollary 5.13]), which means that the fibers are discrete, and hence finite (D is compact). It remains
to prove the uniform bound on the cardinality. So consider the subanalytic set

Z := {(z, βσ(z)) : z ∈ D} ⊂ R2g × R2g ,

Let π2 : R2g × R2g → R2g the projection on the second factor, then for any p ∈ R2g we obviously have

Z ∩ π−1
2 (p) = β−1

σ (p) .

By Gabrielov theorem (see [30, Theorem A.4] or [5, Theorem 3.14]) Z ∩ π−1
2 (p) has at most c connected

components, hence β−1
σ (p) has cardinality at most c.

1.2 Height bounds

In this short subsection we use the same notation of Section 1.1. Let L be a relative f -ample and
symmetric line bundle on A, then we define ĥ : A(Q) → R to be the fiberwise Néron-Tate height i.e.

ĥ(p) := ĥLs
(p) with s = f(p). Moreover we consider a height function h : S(Q) → R on the base. The

following height inequality proved in [12, Theorem B.1] (see also [29, Theorem 5.3.5] for a more general

approach) is a crucial result that relates the values of ĥ and h:

Theorem 1.3. Let X be an irreducible and non-degenerate2 subvariety of A that dominates S. Then
there exist two constants c1 > 0 and c2 ≥ 0 and a Zariski non-empty open subset V ⊆ X with

ĥ(p) ≥ c1h(f(p))− c2 for all p ∈ V
(
Q
)
.

Proof. See [12, Theorem B.1].

Corollary 1.4. Assume that f : A → S is endowed with a non-degenerate section σ : S(C) → A(C).
Then there exists a constant C ≥ 0 and a non-empty Zariski open subset V ⊆ S such that

h(s) ≤ C for all s ∈ V (Q) ∩ σ−1(Ator). (6)

2The references [12] and [16] use a slightly different (but equivalent) definition of Betti map and they have a notion
of non-degenerate subvariety. A section σ is non-degenerate in our sense if and only if the subvariety σ(S(C)) of A is
non-degenerate in the sense of Dimitrov, Gao, Habbegger.
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Remark 1.5. Note that Corollary 1.4 doesn’t claim the maximality of the open set V . For instance
assume that Equation (6) is satisfied, and fix a number field K whose set of C-embeddings is denoted by
Σ. Consider the open set:

W =
⋃
τ∈Σ

V τ

then the inequality h(s) ≤ C (the same C as above) holds for any s ∈ W (Q) ∩ σ−1(Ator) because of the
invariance of the height with the respect to conjugation.

1.3 Torsion bounds

Let’s quickly recall the definition of the stable Faltings height. Let A be a g-dimensional abelian variety
over a number field K. Consider a finite extension L ⊇ K such that A ⊗ L is semistable; moreover let
A → S := SpecOL be the connected component of the Neron model of A⊗L and denote with ϵ : S → A
be the zero section. The sheaf of relative differentials Ωg

A/S pulls back on the base S through ϵ and we

put ωA/S := ϵ∗Ωg
A/S . The stable Faltings height of A is defined as:

hF (A) :=
1

[L : Q]
d̂eg

(
ωA/S

)
where d̂eg is the Arakelov degree calculated on ωA/S seen as hermitian line bundle on the base. It can
be shown that hF doesn’t depend on the field extension (for details check [13]).

Let’s recall an important property of the stable Faltings height. If ϕ : A → A′ is a K-isogeny between
abelian varieties over K, then [26, Corollary 2.1.4] says that the stable Faltings heights of A and A′ are
related in the following way:

|hF (A)− hF (A
′)| ≤ 1

2
log deg(ϕ) (7)

Moreover the stable Faltings height can be used to bound the exponent and the cardinality of the group
of rational torsion points. The result is due to Rémond:

Proposition 1.6. Let A be a principally polarized abelian variety of dimension g defined over a number
field K. The finite group A(K)tor has exponent at most κ(A)

35
16 and cardinality at most κ(A)4g+1, where

d = [K : Q] and κ(A) =
(
(14g)64g

2

dmax(1, hF (A), log d)2
)1024g3

.

Proof. See [27, Proposition 2.9].

For a slightly weaker result involving the semistable Faltings height see [19, Proposition 7.1]. Let Ag

be the coarse moduli space over C of g-dimensional principally polarized abelian schemes. It is known that
Ag is a quasi-projective variety defined over Q and moreover there is a canonical projective embedding
which induces a height function3 hmod : Ag(Q) → R (see for instance [13, §3]). There is a close relationship
between hmod and the stable Faltings height hF , in fact if x ∈ Ag(K) is the point corresponding to a
semistable abelian variety A over a number field K, then there exists a constant C independent from A
and K such that:

|hmod(x)− rhF (A)| ≤ C (8)

where r is a certain positive integer. For the proof of this deep result see [13, Theorem 3.1].

Proposition 1.7. Let f : A → S be a g-dimensional abelian scheme (induced by a morphism of varieties)
admitting a non-torsion section σ : S → A. Let K be the field of definition of S, let s be a torsion value
for σ and put d(s) := [K(s) : Q]. Then there exists real constant C = C(g) (so independent from the
point s) such that

ord(σ(s)) ≤
(
(14g)64g

2

d(s)max (1, h(s) + C, log d(s))
2
) 35840g3

16

.

3There is no general agreement on the notation of this height function on Ag . Some authors for instance denote it as
hgeo and use hmod for the Faltings height instead.
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Proof. Recall that As is an abelian variety over the number field K(s) ⊇ K. The first step consists in
reducing to the principally polarized case. The explicit construction is explained in [12, Poof of Theorem
B.1 (Fourth devissage)], here we just recall the result: there is a quasi-finite dominant étale morphism
ρ : S′ → S with S′ irreducible and a principally polarized abelian scheme g : A′ → S′ such that there
exists a S′-isogeny

ϕ : A′ → A′′ := A×S S′ .

Note that if s′ ∈ S′ is a point lying above s ∈ S, then A′′
s′ = As ⊗K(s′), thus hF (As) = hF (A′′

s′). By
Equation (7) we have that hF (A′′

s′) ≤ hF (A′
s′) + deg(ϕs′), but notice that deg(ϕs′) doesn’t depend on s′,

therefore we can just write:
hF (As) ≤ hF (A′

s′) + C1 . (9)

Consider the induced morphism

mg : S′ → Ag

s′ 7→ [A′
s′ ] =: xs′ .

The stable Faltings height of A′
s′ is calculated over a finite extension L ⊇ K(s′) such that A′

s′ ⊗ L is
semistable, in other words hF (A′

s′) = hF (A′
s′ ⊗ L). From this fact and Equation (8) we obtain

hF (A′
s′) < C2 + hmod(xs′) . (10)

On the other hand, by the usual functorial properties of the Weil height we have

|h(s′)− hmod(xs′)| < C3 (11)

for a constant C3 and for any height function h on S′. Finally the claim follows after putting together
Equations (9) to (11) and Proposition 1.6 applied to the fiber As.

1.4 Control on conjugate points

Let’s fix an affine variety Y (C) ⊆ AN (C) ⊂ PN (C) defined over a number field K. For any point p ∈ Y (C)
we denote by K(p) the field generated by the coordinates of p; this is the same as the residue field of p
when the latter is seen as an abstract point of Y . With the letter h we denote both the absolute height
on PN (Q) and A1(Q), since the formal meaning is clear from the argument of h. Further, we denote by
∥ · ∥ the euclidean norm in AN (C). We fix a closed subvariety B′ of Y and we define

W ′
δ := {x ∈ Y (C) : d(x,B′(C)) < δ}, for δ ∈ R>0

where
d(x,B′(C)) := inf

b∈B(C)
∥x− b∥ .

Moreover let’s consider the set C ′
δ := Y (C) \W ′

δ.

Lemma 1.8. Let H be a subset of Y (C) and let C be a compact subset of H. Fixed p ∈ Y (C) \H, there
exists a constant c (uniform with respect to b ∈ C) such that

d(p,H) ≥ c · ∥p− b∥ for each b ∈ C.

Proof. For each b ∈ C, let us consider a constant ab which satisfies 0 < ab < d(p,H)
∥p−b∥ (note that it exists

since p /∈ H). Observe that ab is a constant which depends on b and such that

d(p,H)− ab · ∥p− b∥ > 0.

Then there exists an open (analytic) neighbourhood Nb of b such that

d(p,H)− ab · ∥p− b′∥ > 0 for each b′ ∈ Nb.

The family {Nb : b ∈ H} is an open covering of the compact set C. Thus there exists a finite subcovering
{Nbi : i = 1, . . . , n}. The constant c := min1≤i≤n(abi) works uniformly on C. In fact for each b ∈ C we
have

c · ∥p− b∥ ≤ ab · ∥p− b∥ < d(p,H).
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Proposition 1.9. Let K be a number field which contains the field of definition of the subvariety B′.
Given a real constant a > 0, there exists a real constant δ = δ(K, a) > 0 with the following property: for
any α ∈ Y (Q)\B′(C) with h(α) ≤ a, there are at least 1

2 [K(α) : K] different K-embeddings τ : K(α) ↪→ C
such that ατ lies in C ′

δ.

Proof. Fix β = (β1, . . . , βN ) ∈ B′(Q) such that there exists an index i with βi ∈ K(α) (observe that such
a β always exists); and write α := (α1, . . . , αN ). Clearly h(α) ≥ h(αi) and h(β) ≥ h(βi). This implies

h(αi − βi) ≤ h(αi) + h(βi) + log(2) ≤ h(α) + h(β) + log(2) (12)

Now, define
Σ := {τ : K(α) ↪→ C : id = τ|K and ατ /∈ C ′

δ}

and denote by k the cardinality of Σ. Since τ is a K-embedding we have βτ ∈ B′(Q). Moreover
observe that, given τ ∈ Σ, we have ατ /∈ B′(C). Thus, by Lemma 1.8 for p = ατ , H = B′(C) and
C = {βτ : τ ∈ Σ}, and since ατ /∈ C ′

δ (by definition of Σ) there exists a constant cτ such that

1

|ατ
i − βτ

i |
≥ 1

∥ατ − βτ∥
≥ cτ

d(ατ , B(C))
>

cτ
δ
.

Considering c := minτ∈Σ(cτ ) we obtain a constant c such that:

1

|ατ
i − βτ

i |
≥ c

δ
for fixed i and for all τ ∈ Σ.

Then for δ small enough we obtain

h(αi − βi) ≥
1

[K(α) : Q]

∑
ν

logmax

(
1,

∣∣∣∣ 1

αi − βi

∣∣∣∣
ν

)
≥

≥ 1

[K(α) : Q]

∑
τ∈Σ

logmax

(
1,

∣∣∣∣ 1

ατ
i − βτ

i

∣∣∣∣) ≥ k

[K(α) : Q]
log
( c
δ

)
.

(13)

By (12), (13) and the fact that α has bounded height we obtain

k ≤ (a+ h(β) + log(2)) · [K(α) : Q]

log(c/δ)
.

For δ small enough we have
a+ h(β) + log(2)

log(c/δ)
≤ 1

2[K : Q]
.

Therefore

k ≤ 1

2
[K(α) : K].

Now let’s fix a projectve variety X defined over K and a closed subvariety B of X. For any point

p = (x0 : . . . : xN ) ∈ X(C) pick any xi ̸= 0 and then put K(p) := K
(

xj

xi
: j = 0, . . . , N

)
. Note that K(p)

doesn’t depend on the choice of xi (i.e. the standard affine chart) and moreover K(p) is the residue field
of p when the latter is seen as an abstract point of X. We prove a higher dimensional generalization of a
quite useful result already appeared for the projective line in [19, 20, 21, Lemma 8.2]. Roughly speaking
the result claims the following: K is the field of definition of B, a ∈ R and α ∈ X(Q) is any point not
contained in B(C) with height at most a; then we can give an explicit lower bound, depending only on
[K(α) : K], on the number of K(α) conjugates of α that lie in a “big enough” compact not intersecting
B(C).

We first construct the compact subset. Denote by U0, . . . , UN the standard affine charts of the
projective space. Let’s define

Wi,δ := {x ∈ X(C) ∩ Ui : d(x,B(C) ∩ Ui) < δ} for fixed δ ∈ R>0 and i = 1, . . . , N. (14)

Then we put Wδ :=
⋃N

i=0 Wi,δ and note that it is an open subset of X(C) containing B(C). Therefore
Cδ := X(C) \Wδ is a compact set not intersecting B(C).
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Proposition 1.10. Let K be a number field which contains the field of definition of the subvariety B.
Given a real constant a > 0, there exists a real constant δ = δ(K, a) > 0 with the following property: for
any α ∈ X(Q)\B(C) with h(α) ≤ a, there are at least 1

2 [K(α) : K] different K-embeddings τ : K(α) ↪→ C
such that ατ lies in Cδ.

Proof. Fix α ∈ X(Q)\B(C) with h(α) ≤ a and fix a chart Ui such that α ∈ Ui. Since the chart is invariant
under the action of each τ , we can apply Proposition 1.9 for Y (C) = X(C) ∩ Ui, B

′(C) = Y (C) ∩ B(C)
and C ′

δ = Cδ ∩ Ui. Therefore, we obtain a real number δi which only depends on K, a and Ui and which
satisfies the statement for α ∈ Ui. We can repeat the argument for any standard chart and after defining
δ := min0≤i≤N (δi), we can conclude.

Remark 1.11. Observe that the the intersection of Cδ with each standard chart Ui is definable in
the o-minimal structure Ran. In fact, first of all let’s identify Ui ∩ X(C) with R2N , then the map
R2N ∋ p 7→ d(p,B(C) ∩ Ui) is a globally subanalytic function (see for instance [3, Example 2.10]). At
this point we apply [28, §1 Lemma 2.3] to conclude that the set Wi,δ = Ui ∩Wδ is globally subanalytic
for any δ > 0. Finally, note that the intersection Cδ ∩Ui is the complement set (Ui ∩X(C)) \ (Ui ∩Wi,δ),
so it is also globally subanalytic.

2 The main theorem

2.1 Proof

In this section we prove Theorem 0.2. The proof is rather long and technical; it will be eventually split
in two cases after a common setup. We use the same notations fixed in the introduction.

2.1.1 Setup of the proof

We recall that it is enough to work with the conditions given by Equation (2). Let’s keep in mind the
assumptions 1)−4), in particular recall we are assuming two fibersA1,s1 andA2,s2 to be equal at most over
a proper Zariski-closed subset E ⊂ Si for fixed i, say i = 1. Notice that f1 defines a rational map when
restricted to A2, analogously for f2 when restricted to A1; we denote by Ind(f1, f2) := A1∪A2\(A1∩A2)
the union of indeterminacy loci of the previous maps. Since A1 ∩ A2 has dimension 2g, the closed set
Ind(f1, f2) is finite. We denote with C(β1) the locus of critical points of the Betti map β1; it is the proper
subset of S1 on which the Betti map β1 is not a submersion. Moreover, by Corollary 1.4 there exist open
subsets S′

1 ⊆ S1 and S′
2 ⊆ S2 where the σ1-torsion values and the σ2-torsion values have bounded height

by the same constant, respectively. We fix a number field K containing all the fields of definitions of
A, S1, S1, f1, f2, σ1, σ2,∆1,∆2, C(β1), Ind(f1, f2); let’s define

A′ := A2 ∩ f−1
1 (S′

1) ∩ f−1
2 (S′

2) ∩ f−1
1 (S1 \ E) ∩ f−1

1 (S1 \ C(β1)) . (15)

By Remark 0.5 it’s enough to prove Theorem 0.2 for F ∩ A′. We denote with ΣK the set of complex
embeddings of K. By Remark 1.5 we can also ensure that S′

2 is invariant under the action of ΣK ; S′
1 is

also invariant but this is not relevant for us. Consider p ∈ F ∩ A′ and let’s put b := f2(p). Let m be the
order of σ2(b) in A2,b, in symbols we set m = m(b) := ord(σ2(b)). If the set

O := {ord(σ2(b)) : b ∈ f2(F ∩ A′)} ⊆ N (16)

is bounded by a constant C, then

{f2(p) : p ∈ F ∩ A′} ⊆ {b ∈ S′
2 : ord(σ2(b)) ≤ C} ⊆ σ−1

2

 ⋃
N≤C

A2[N ]

 ,

so Theorem 0.2 follows. Thus the strategy of the proof is the following:

We prove that O is uniformly bounded i.e. m is uniformly bounded.

In particular, we will partition O in two subsets and show that each of them contains a finite number of
elements.

For any b ∈ S′
2, let τ : K(b) ↪→ C be any K-embedding. Recalling that S′

2 is invariant under the
action of ΣK , in our proof we can replace b by bτ (for any n we have nσ2(b

τ ) = nσ2(b)). So, since
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b has bounded height, we can apply Proposition 1.10 on S2 and ∆2 (that play the role of X and B
respectively) and conclude that there exists an analytic compact set ∆ ⊆ S2(C) such that b ∈ ∆. With
the notation adopted in Proposition 1.10 we have ∆ = Cδ for δ > 0 small enough. Roughly speaking we
have just explained that we can assume that b lies in a “big enough” compact set of S2(C) that avoids
the discriminant locus of f2. Moreover, by Remark 1.11 the compact set ∆ has the property that the
intersection ∆ ∩ Ui with each standard chart is definable in the o-minimal structure Ran.

Before starting with the actual proof we need introduce some other objects. Let p ∈ F∩A′ such that
f2(p) = b as above, and let’s consider the points pr := tr2(p) = p + rσ2(b) for r = 0, 1, . . . ,m − 1. Then
define:

nr := ordσ1(f1(pr)) .

Note that nr is finite since O(p) is finite. Moreover, nr is only defined when pr does not lie in the
indeterminacy locus of f1.

We also need to construct an auxiliary abelian scheme that will play a crucial role in the whole proof.
Consider the variety Fb := A2,b∩A1 \

(
f−1
1 (∆1 ∪ C(β1))

)
; it can be seen as the base of an abelian scheme

X → Fb by defining its fibers as Xz := A1,f1(z). Clearly such fibers are all smooth since we have removed
the discriminant locus of f1. In addition, this abelian scheme is endowed with a non-torsion section
sX := σ1 ◦ f1. Finally, with Proposition 1.7 in mind, we also fix the constant

c′ = c′(g) := 3 · 35840g
3

16
. (17)

After the following section in which we will deal with ‘translates of points’, we will distinguish two cases
in the proof, each of them dealing with a subset of O.

2.1.2 Control on translates and their heights

Given a point p ∈ F∩A′ we are interested in points of the type p+rσ2(b), which we call “translates” of p,
conjugates of them and their images by f1. Notice that some translates could lie into the indeterminacy
locus of f1, but this is not a problem since we can assume m so big that many translates avoid this
indeterminacy locus. However, in order to avoid long and redundant comments we write the f1-images
of all translates tacitly ignoring points where f1 is not defined. At a first glance, these points seems to
be “wild” with respect to the property of lying in A1 or having bounded height (i.e. lying in A′). We
now show that under our hypotheses it is actually possible to have a certain degree of control on such
properties:

Proposition 2.1. Let b ∈ ∆ and p ∈ F∩A′. Let h : A2,b(Q) → R and h′ : S1(Q) → R be any two height
functions. Then there exists a constant C ≥ 0 such that

h(p+ rσ2(b)) ≤ C, h′(f1(p+ rσ2(b))) ≤ C for each r = 0, . . . ,m− 1.

Proof. Denote by ĥ : A2,b(Q) → R the Néron-Tate height on the fiber and recall that the following
relation holds:

|h(x)− ĥ(x)| < c1 for any x ∈ A2,b(Q).

Moreover, the Néron-Tate height satisfies the parallelogram law

ĥ(x+ y) + ĥ(x− y) = 2ĥ(x) + 2ĥ(y) for x, y ∈ A2,b(Q).

Now: we can assume p ∈ A′ ∩ A1 so that it maps through f1 on a torsion value, and moreover rσ2(b)

is a torsion point of A2,b. So we get ĥ(p) ≤ C ′ (where the constant is uniform with respect to b, p) and

ĥ(rσ2(b)) = 0. Thus, by choosing x = p and y = rσ2(b) for any r = 0, . . . ,m − 1 in the parallelogram
law, we obtain

ĥ(p+ rσ2(b)) ≤ ĥ(p+ rσ2(b)) + ĥ(p− rσ2(b)) = 2ĥ(p) ≤ C2.

In other words, we get h(p+ rσ2(b)) ≤ C ′′, i.e. each point of the type p+ rσ2(b) has uniformly bounded
height. The full claim then follows from the functorial properties of the Weil height with respect to the
morphism f1 : A2,b → S1.

Let’s embed the fiber A2,b(C) inside some PN (C) and let U0, . . . , UN ⊆ PN (C) be as usual the standard
charts. The f2-fibers could contain part of some ‘problematic’ Zariski-closed set Xb which comes from a
Zariski-closed subset Y ⊆ S1 via f1, in the sense that

Xb = A2,b(C) ∩ f−1
1 (Y (C)).
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In general, in order to allow our tools to work well we need to remove Xb from the fiber, but preserving
some properties we are interested in. To be more precise, we want to show that Xb is contained in a
small enough open subset Vb ⊆ A2,b(C) whose intersection Vb ∩ Ui with each standard chart of PN (C)
is definable in the o-minimal structure Ran: first of all let’s identify A2,b(C) ∩ Ui with R2N ; then by
repeating the construction in Equation (14), consider the globally subanalytic sets Vi,δ := {z ∈ A2,b(C)∩
Ui : d(z,Xb ∩ Ui) < δ} for any δ > 0 small enough and define

Vb = V δ
b :=

N⋃
i=0

Vi,δ. (18)

Now, denote by U0, . . . , UM the standard affine charts on S1(C). Analogously, we can encircle Y with a
small enough open set of which we can control the size (chart-by-chart), so let us consider the sets

Wi,δ := {z ∈ S1(C) ∩ Ui : d(z, Y ∩ Ui) < δ}

for any δ > 0 small enough, and define W :=
⋃M

i=0 Wi,δ. We can carry out the construction of Vb and W
such that f1(Vb) ⊆ W , so that their size is controlled via the same δ.

Further, we can decompose the compact set ∆ ⊆ S2(C) as a finite union of small definable compact
sets Ai. We work in one of those compact sets that contains b and we shall call it A. We are interested in
controlling the translates of a point p ∈ F∩A′ or one of its conjugates with respect to the just described
open sets Vb and W ; moreover, we want A to be preserved by the said conjugation.

To this end suppose that the Zariski-closed set Y , and consequently also Xb, is defined over K (or
alternatively enlarge the field to make it so) and denote by Σp the set of complex K-embeddings of
the field K(p); given τ ∈ Σp, we get f2(p

τ ) = bτ but observe that two conjugates of b might coincide
since K(p) properly contains K(b) in general. Each element of Σp induces by restriction a complex
K-embedding of K(b) in a surjective way. We can apply Proposition 1.10 to b and conclude that the
number of K(p)-conjugates of b contained in A is ≫ d1 where d1 := [K(p) : K] and the implicit constant
is independent of p and b (we are using the fact that the number of Ai’s is fixed). Denote by Σp,A the
subset of Σp given by the K-embeddings τ which satisfy the further condition bτ ∈ A; by the previous
discussion we get #Σp,A ≫ d1 (say ≥ c1d1).

Proposition 2.2. Let Xb, Y, Vb,W be as above and let p ∈ F∩A′. For m = ord(σ2(b)) large enough there
exists τ ∈ Σp,A with the following property: there are at least m/2 elements of the type f1(p

τ + rσ2(b
τ ))

which don’t lie in f1(Vbτ ).

Proof. Denote again by U0, . . . , UM the standard affine charts on S1(C). First of all, consider the compact
set Y : cover the intersection Ui ∩ Y with euclidean disks centered at each point and with fixed radius
R. The union of these disks gives an open covering of Y , so we can fix a finite subcovering O with the
property that each element of O is an open disk contained in some chart Ui. Define NO := #O.

Observe that the action of τ ∈ Σp,A fixes the charts. Thus, for b, p given, the points f1(p
τ + rσ2(b

τ ))
varying τ are contained into the same chart; but the same points varying r are not necessarily contained
into the same chart. Fixed b ∈ ∆, p ∈ F ∩ A′, we introduce the set

C = C(b,p,τ) := {f1(pτ + rσ2(b
τ )) : r = 0, . . . ,m− 1}

and prove the claim by contradiction: so let’s assume that for all τ ∈ Σp,A there are at least m/2
elements of C that lie in f1(Vbτ ). Denote by N ′ the (finite) number of connected components of W .
Then for each τ there exist an index i(τ) and a connected component Wτ of W such that there are at
least m′ := ⌈m/(2N ′(M + 1))⌉ elements of the type f1(p

τ + rσ2(b
τ )) that lie in Wτ ∩ Ui(τ) (recall that

m can be thought big enough).
Step 1. First of all, prove that for m large enough and for each τ we can assume to have at least m′/2

values of r such that
f1(p

τ + rσ2(b
τ )) ∈ (Wτ ∩ Ui(τ)) \ Y.

In order to ease the notation, we will write a
(b,p,τ)
r := f1(p

τ + rσ2(b
τ )) for k = 0, . . . ,m− 1 and τ ∈ Σp;

moreover, fix j and denote by {}j the j-component of a point in each chart Ui. To prove the fact just
claimed, fix m and suppose that there exist τ ∈ Σp,A and ≥ m′/2 values of r such that

a(b,p,τ)r ∈
(
Wτ ∩ Ui(τ)

)
∩ Y ;
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in what follows, we remove the explicit dependence on b, p, τ since they all are fixed. Note that, for the
said values of r we have

aγr ∈ (Wτ ∩ Ui) ∩ Y for each γ ∈ Σp .

Observe that the connected component Wτ is not preserved by the action of γ a priori, but in this case
this is true since it encircles a (finite) union of irriducible components of Y (which are preserved by γ).
For each γ ∈ Σp there exists Oγ ∈ O which contains at least m′′ := ⌈m′/2NO⌉ elements of the type aγr
with varying r; observe that Oτ is contained in some chart which can be ̸= Ui. Fix a small ε > 0 and
observe that for fixed m large enough there exist two elements aγr1,γ , a

γ
r2,γ ∈ Oγ such that

|{aγr1,γ − aγr2,γ}j | < ε.

To prove the previous assertion, fix ε > 0. Since Oγ has compact closure in the corresponding chart, we
can cover it with a finite number of small disks with fixed radius ε. If we call Nε the cardinality of the
covering, for m′′ > Nε we obtain the thesis. Now, for each γ define

Sγ := {r ∈ {0, . . . ,m− 1} : aγr ∈ Oγ}.

Denote by Dγ ⊆ S2
γ the diagonal of Sγ and define Sγ := S2

γ \Dγ . Observe that for fixed γ and (r, r′) ∈ Sγ

we get
|{aγr − aγr′}j | ≤ |{aγr − aγr1,γ}j |+ |{aγr1,γ − aγr2,γ}j |+ |{aγr2,γ − aγr′}j | < 2R+ ε.

We have

1

[K(p) : Q]

∑
γ∈Σp,A

∑
(r,r′)∈Sγ

max log

(
1,

1

|{aγr − aγr′}j |

)
≥

≥ 1

[K(p) : Q]
c1d1m

′′(m′′ − 1) log
1

2R+ ε
.

By Proposition 2.1 we have h(aγr − aγr′) ≤ c2 for each r. On the other hand we have

1

[K(p) : Q]

∑
γ∈Σp,A

∑
(r,r′)∈Sγ

max log

(
1,

1

|{aγr − aγr′}j |

)
≤

∑
r ̸=r′

1

[K(p) : Q]

∑
γ∈Σp

max log

(
1,

1

|{aγr − aγr′}j |

)
≤

∑
r ̸=r′

h(ar − ar′) ≤ c2 · (m− 1)2.

In the previous lines we have used the following facts:

(i) the property f1(p
τ + rσ2(b

τ )) = f1(p+ rσ2(b))
τ which is valid since the fiberwise group law is given

by a globally regular map (defined over K) ;

(ii) some elementary height properties exactly like in Equation (13);

(iii) the bounded height of f1(p + rσ2(b)). This is the crucial point which allows to obtain the contra-
diction.

Therefore, we finally obtain

log
1

2R+ ε
≤ c3.

For m big enough, we obtain a sufficiently small ε as to give a contradiction.
Step 2. Now fix m large enough for the claim of Step 1 to be satisfied. Similarly to the strategy we

have adopted for Y , we can cover the compact closure of Wτ \ Y with finitely many open disks, each
contained in some Ui. Call Qi the compact closure of such disks and let NQ be the cardinality of such a
finite covering; note that the intersection Qi ∩ Y is not necessarily empty. Put

Rτ :=
{
r ∈ {0, . . . ,m− 1} : f1(pτ + rσ2(b

τ )) ∈ Qj(τ) ∩ (Wτ \ Y )
}
.

where j(τ) is chosen so that #Rτ ≥ m′/(2NQ): it exists by Step 1. Denote by Eτ ⊆ R2
τ the diagonal of

Rτ and define Rτ := R2
τ \ Eτ . Note that

#Rτ ≥
⌈

m′

2NQ

⌉
·
(⌈

m′

2NQ

⌉
− 1

)
.
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Fix β ∈
(⋂M

i=0 Ui

)
\
(⋃NQ

i=1 Qi

)
and keep the same notation as above. By Lemma 1.8 for p = β and

C = H = Qj(τ), there exists a constant Cj(τ) such that

∥β − α∥ ≤ Cj(τ)d(β,Qj(τ)) for each α ∈ Qj(τ).

With a similar argument as in the proof of Lemma 1.8, since the set {a(b,p,τ)r | r ∈ Rτ} is compact and
its elements lie outside Y we obtain a constant C ′

j(τ) such that

d(β,Qj(τ)) ≤ C ′
j(τ)d(a

(b,p,τ)
r , Y ∩ Uj(τ)) for each a(b,p,τ)r with r ∈ Rτ .

Taking the maximum of all constants involved and passing to the j-component, we finally obtain a uniform
constant C such that for each (r, r′) ∈ Rτ we have

|{a(b,p,τ)r − a
(b,p,τ)
r′ }j | ≤ |{a(b,p,τ)r − β}j |+ |{a(b,p,τ)r′ − β}j | ≤

≤ C ·
(
d(a(b,p,τ)r , Y ∩ Uj(τ)) + d(a

(b,p,τ)
r′ , Y ∩ Uj(τ))

)
≤ 2Cδ.

Now, with a similar argument as above, we obtain

1

[K(p) : Q]

∑
τ∈Σp,A

∑
(r,r′)∈Rτ

max log

(
1,

1

|{a(b,p,τ)r − a
(b,p,τ)
r′ }j |

)
≥

≥ 1

[K(p) : Q]
c1d1

⌈
m

4NQN ′(M + 1)

⌉(⌈
m

4NQN ′(M + 1)

⌉
− 1

)
log

1

2Cδ
.

(19)

On the other hand, we get

1

[K(p) : Q]

∑
τ∈Σp,A

∑
(r,r′)∈Rτ

max log

(
1,

1

|{a(b,p,τ)r − a
(b,p,τ)
r′ }j |

)
≤

∑
r ̸=r′

1

[K(p) : Q]

∑
τ∈Σp

max log

(
1,

1

|{f1(pτ + r1σ2(bτ ))− f1(pτ + r2σ2(bτ ))}j |

)
≤

∑
r ̸=r′

1

[K(p) : Q]

∑
τ∈Σp

max log

(
1,

1

|{f1(p+ r1σ2(b))}τj − {f1(p+ r2σ2(b))}τj |

)
≤

≤ (m− 1)2 · (h(f1(p+ r1σ2(b))) + h(f1(p+ r2σ2(b))) + log 2) ≤
≤ (m− 1)2 · C.

(20)

Hence, comparing Equations (19) and (20) we finally have

log
1

2Cδ
≤ C · (m− 1)2[K : Q]

c1

⌈
m

4NQN ′(M+1)

⌉
·
(⌈

m
4NQN ′(M+1)

⌉
− 1
) .

When m → +∞ the latter equation is

log
1

2Cδ
≤ O(m2)

O(m2)
.

This is a contradiction, since the implicit constant is uniform but we are allowed to take δ > 0 arbitrarily
small.

2.1.3 First case

Let’s define
O′ :=

{
m ∈ O : ∃pr ∈ A2,b \ f−1

1 (C(β1)) such that nr > mg(2c′+1)
}

.

We prove that the set O′ is finite giving an upper bound for m ∈ O′. We keep all the notations introduced
above and in addition we put for simplicity L := f−1

1 (C(β1)).
Suppose b ∈ ∆ and m ∈ O′. Let pr = p+ rσ2(b) ∈ A2,b \ L be any of the m points p0, . . . , pm−1 such

that nr > m2c′+1. Similarly to what has been done in Equation (18) for the Zariski-closed set Xb, we can

14



A′

A1,f1(z)

Tb

• z

S′
1 \ (C(β1) ∪ E)

S′
2 \ E •

b

• f1(z)
f1

f2

X

Figure 1: A schematization of the family X → Tb.

construct an open set Vb ⊂ A2,b(C) which contains the locus A2,b∩ (f−1
1 (∆1)∪L) and whose intersection

Vb ∩ Ui with each standard chart of PN (C) is definable in the o-minimal structure Ran. Moreover, we
tacitly include in Vb small open sets which encircle points of the indeterminacy locus of f1 which lie in
A2,b(C), leaving unchanged the properties of Vb. Define

Tb := A2,b(C) \ Vb .

By choosing in a suitable way the size of Vb, we can assume that pr ∈ Tb. Now, look at the abelian
scheme X → Fb and fix z ∈ Fb(C). As explained in Equation (3) and Equation (4), there exists a simply
connected open set U ′

z ⊆ Fb(C) in the complex topology containing z and a period map on U ′
z:

P(b)
X =

(
ω
(b)
1,X , . . . , ω

(b)
2g,X

)
;

in other words we have holomorphic functions ω
(b)
i,X : U ′

z → Cg for i = 1, . . . , 2g which fix a basis of the
corresponding lattice Λz′ for each z′ ∈ U ′

z. Thus, the family of open simply connected sets {U ′
z : z ∈ Tb}

is a covering of Tb. Fixing a standard chart Ui which contains z, we can consider a simply connected open
definable subset Uz ⊆ U ′

z ∩ Ui which contains z and whose analytic closure Dz is contained in U ′
z ∩ Ui.

In other words, we can consider an open covering {Uz : z ∈ Tb}, where each Uz is a simply connected
open set with the following properties: its analytic closure Dz ⊆ Fb ∩ Ui is a definable compact set

in the o-minimal structure Ran and all the period functions ω
(b)
i,X with i = 1, . . . , 2g are well-defined as

holomorphic functions on Dz. Since Tb is compact, it can be covered with finitely many small compact
simply-connected sets of the type Dz.

Since U ′
z ⊆ Fb(C) is simply connected, we obtain notions of abelian logarithm ℓ

(b)
X and Betti map

β
(b)
X =

(
β
(b)
1,X , . . . , β

(b)
2g,X

)
of the section sX on each U ′

z as explained in Equation (4); note that the abelian

logarithm is a holomorphic function on each compact set Dz and the Betti map is described by the
equation

ℓ
(b)
X (z) = β

(b)
1,X (z)ω

(b)
1,X (z) + · · ·+ β

(b)
2g,X (z)ω

(b)
2g,X (z),

where the Betti coordinates β
(b)
i,X are real-analytic functions on each compact set Dz. In addition note

that β
(b)
X doesn’t have any critical points on Tb by construction (we have expressly removed them).

Summarizing: we have obtained the existence of finitely many simply connected compact sets Di

with i = 1, . . . , ncomp which are definable in the o-minimal structure Ran and where the Betti map β
(b)
X

is definable in Ran and a submersion.

Remark 2.3. Fix z ∈ Tb. Observe that all the relevant functions (i.e. period functions, logarithms and
Betti maps of X → Fb) are constant on each fiber A1,f1(z); in other words, they are independent of b. As
a consequence, the number ncomp of compact sets Di just constructed can be supposed to be constant
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with respect to b: in fact the Di’s are projected by f1 onto a finite number of compact disks in S1, where
the Betti coordinates are real-analytic.

Let’s proceed with some useful relabelling in order to simplify the notations, we put ζ := pr and
n := nr = ord(sX (ζ)). Fix one of the previous compact sets, say D, which contains ζ. Note that Tb is not
closed under the addition, but ζ is ensured to be contained in Tb by our previous discussions. Moreover,
since A2,b ∩ A′ is not closed under the addition then ζ need not to have uniformly bounded height a
priori. Anyway, bounded height was ensured by Proposition 2.1. By applying Proposition 1.7 to X → Fb

with s = ζ, there exist two constants c = c(g), c′ = c′(g) which only depend on g such that

n ≤ c[K(ζ) : Q]c
′
.

Note that c′ is exactly the constant defined in Equation (17). Up to multiplying c by [K : Q]c
′
we obtain

n
1
c′ ≪ [K(ζ) : K]. (21)

On the other hand, recalling that the degree of the isogeny induced by the multiplication by m is m2g

and the condition mg(2c′+1) < n, we deduce

[K(b) : K] = [K(σ2(b)) : K] ≤ m2g ≪ n
2

2c′+1 . (22)

By (21) and (22) we obtain

[K(ζ) : K(b)] =
[K(ζ) : K]

[K(b) : K]
≫ n

1
c′

n
2

2c′+1

= n
1

c′(2c′+1) .

In this case of the proof we are now going to define a series of positive constants c0, c1, . . . that we
need keep until the end. Let’s start with c0 := c′(2c′ + 1). We can then take n1 conjugates ζj with

j = 1, . . . , n1 ≫ n
1
c0 of ζ over K(b). In this way, since sX is defined over K we obtain torsion values

sX (ζj) on X for all j = 1, . . . , n1. Note that each ζj inherits the same properties as ζ: for example, it
has uniformly bounded height since ζ does. Moreover, up to reduce the size of the open set Vb we can
assume that all ζj ’s lie in Tb. Therefore, since the number ncomp of compact sets Di is prescribed since
the beginning (see Remark 2.3), by Proposition 1.10 we may assume that there exists a positive number
c1 > 0 depending only on the original data (it can be taken for instance equal to 1/(2ncomp)) such that
at least c1n1 of these conjugates lie in a same compact set of the type Di. From now on, we will denote
by Ω = Ωb ⊆ A2,b(C) the compact set (among the Di’s) just described. Hence, we may assume that Ω
contains ζj for j = 1, . . . , λ with

λ > c2n
1
c0 , (23)

where the constant c2 is uniform with respect to b. Recall that the Betti coordinates are well-defined and
real-analytic in Ω.

With the same reasoning we carried out for the Di’s, we can decompose the compact set ∆ ⊆ S2(C) as
a finite union of small definable compact sets Aj . Recall that the Betti coordinates β

(b)
i,X are real-analytic

with respect to a variable z which varies in the corresponding compact set Ωb. With the following
construction we want to make the Betti coordinates real-analytic with respect to b too. To this regard,
observe that for each point b̃ ∈ S′

2 and each point p̃ ∈ F ∩ A′ which satisfies f2(p̃) = b̃ we can realize
the same construction as above, thus we have corresponding objects for which we keep the analogous
notations: for example we have corresponding integers numbers ñ, m̃, point ζ̃ and sets Ω̃, Tb̃. Fix Aj and
define the set

Ij :=
{
b̃ ∈ Aj : there exists p̃ ∈ Tb̃ with ñ > m̃g(2c′+1)

}
.

For each b̃ ∈ Ij there exists a definable simply connected compact set Ω̃ ⊆ Tb̃ which contains ≫ n
1
c0

conjugates (with implicit constant independent of b). Fix b and b̃ and take an analytic path α : [0, 1] →
A′ ∩ A1 such that

α(0) = ζ, α(1) = ζ̃.

For t ∈ [0, 1] denote by Ez a disk in Tf2(α(t)) centred in α(t) where β
(f2(α(t)))
i,X are real-analytic. Choose

α such that f2(α([0, 1])) ⊆ Aj . Since the Betti coordinates are uniform with respect to f1-fibers (see
Remark 2.3), the condition which ensures the Betti coordinates to be real-analytic with respect to both
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f2

f1

Aj

D

Figure 2: A visualization of the analytic path α : [0, 1] → A′ ∩ A1.

variables b and z is expressed by requiring that there exists a simply connected set D ⊆ S1(C) such that
f1(α([0, 1])) ⊆ D. By this motivation, fix b ∈ Aj and consider the open set

Ub :=

{
b′ ∈ Aj :

∃ analytic path α in A′ ∩ A1 such that
α(0) = ζ, α(1) = ζ ′, f1(α([0, 1])) ⊆ D, f2(α([0, 1])) ⊆ Aj

}
,

where D ⊆ S1(C) is a fixed simply connected open set which makes Ub non-empty. We can replace the
compact covering {Aj} of ∆ by a (finite) compact covering made with definable sets contained in Ub for
any b.

Roughly speaking, we can assume that the compact sets are such that the Betti coordinates are
real-analytic in the union ⋃

b∈Aj

{b} × Ωb ⊆ Aj × Ωb ⊆ R2g × R2g. (24)

Note that if b /∈ f2(F ∩ A′), by Ωb we mean one of the disks Ez defined above. Let us now consider the
real-analytic variety defined in R2g by

Zb := {β(z) : z ∈ Ωb},

where β(z) := β(b)(z) := (β
(b)
1,X (z), . . . , β

(b)
2g,X (z)). Observe that thanks to the main property of the Betti

map each ζj , for j = 1, . . . , λ, gives a rational point β(ζj) of denominator ≥ n > m
1
c0 on Zb. Some of

these rational points might coincide, but since the ζj ’s lie in A2,b \ L we can apply Proposition 1.2 and
conclude that we have a number of distinct rational points which is ≫ λ, say ≥ c3λ. Moreover they
have height ≪ n, say ≤ c4n. The constants c3, c4 depends only on the involved compact sets, which were
previously fixed.

Remark 2.4. Let’s explain more in detail why c4 is uniform: on each compact Dz the Betti map attains
a maximum, but the denominators of β(ζj) are bounded, hence we get a uniform constant for each
compact. Since the number of compact sets was previously fixed we get a uniform constant c4.
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Since the Betti coordinates are real-analytic in the union described in Equation (24) and by Re-
mark 1.1, for each j we have a definable family

Z :=
⋃

b∈Aj

{b} × Zb ⊆ R2g × R2g,

where Zb are the fibers. Denote by H the usual absolute height on the projective space and define

Zb(Q, T ) = {p ∈ Zb(Q) | H(p) ≤ T}, N(Zb, T ) := #Zb(Q, T ).

Therefore by Equation (23) we have

N(Zb, c4n) ≥ c2c3n
1
c0 . (25)

On the other hand by [25, Theorem 1.9], for any ε > 0 there exists a constant c(Z, ε) such that

N(Zb − Zalg
b , T ) ≤ c(Z, ε)T ε, (26)

where Zalg
b and Zb −Zalg

b are the algebraic and the transcendental part of Zb, respectively. Observe that
the constant is independent of b ∈ Aj .

We now show that the algebraic part of Zb is empty. This is a rather standard procedure that employs
the algebraic independence of coordinates of the logarithm with respect to the periods (see for instance
[21, Lemma 6.2]). Anyway, we recall the main steps for the sake of clarity, provided having the following
important elucidation in mind.

Remark 2.5. We point out that the argument described below works only for g ≥ 2 since we need at
least two components of the abelian logarithm. Nevertheless, the case g = 1 can be treated with small
modifications in the construction of the family Z: indeed it is enough to consider two auxiliary abelian
schemes instead of X only. In this way we have two Betti maps and two logarithms (each of them with
one component). Then we apply the same procedure described above on the new definable family Z that
now lives in R2 × R4. For the details of the case g = 1 the reader can check directly [9, Theorem 1.1]
where, what we have just described in this remark, is exactly the technique carried out.

If the algebraic part is non-empty there is a real-algebraic arc γ contained in Zalg
b . In what follows we

omit the dependence on b and X to simplify the notation. Consider the real-analytic set U := β−1(γ) ⊆ Ω.
Since γ is a real algebraic arc and the points β(z) with z ∈ U satisfy the defining real algebraic equations
of γ, then the Betti coordinates βi are algebraically dependent over C(S) when restricted to U . Moreover,
this also implies that the field generated by the 2g Betti coordinates (when restricted to U) over C(S)
has transcendence degree at most 1; in other words, any two of the Betti coordinates verify an algebraic
equation over C(S). Thus, we have two cases: either the 2g Betti coordinates restricted to U all depend
algebraically on any of them which is not constant, or otherwise they are all constant.

In the first case: let’s denote with t the transcendence degree over C(S) of the coordinates of the
period functions ωi = (ωi1, . . . , ωig), for i = 1, . . . , 2g; clearly t ≤ 2g2. Here, all functions are intended
to be restricted to U , unless otherwise specified. Therefore, the field generated by ωi, βi over C(S) has
transcendence degree at most t+1 and contains coordinates of the abelian logarithm ℓ. This implies that
coordinates of the abelian logarithm are algebraically dependent over C(S) ({ωij}). However all these
functions are locally holomorphic, so the dependence would hold identically on their domain Ω, which
violates the independence result [1, Theorem 3] of André (see also [21, Lemma 5.1]).

In the second case, i.e. when the Betti coordinates are all constant when restricted to U , they are
constant on their domain Ω by the same principle as above. This implies that the corresponding sections
are identically torsion, which is a contradiction.

Finally, consider the set
Zb(Q, c4n) = {p ∈ Zb(Q) : H(p) ≤ c4n},

where c4 is as above. Taking ε = 1/(2c0), by Equation (25) and Equation (26), we obtain

c2c3n
1
c0 ≤ N(Zb, c4n) ≤ c(Z)(c4n)

1
2c0

where all constants c(Z), c2, c3, c4 are uniform with respect to b ∈ Aj . This implies n
1

2c0 ≤ c5, that is

n
1

2c′+1 ≤ c2c
′

5 . In particular, this implies

m < n
1

g(2c′+1) ≤ c
2c′
g

5 .

This estimate holds uniformly with respect to b ∈ Aj . Since we have a finite number of compact sets Aj

which cover ∆, we obtain a global bound for m ∈ O′ on ∆. By Proposition 1.10, each torsion value of S′
2

has at least a conjugate in ∆ and this implies that the last estimate holds uniformly for b ∈ f2(F ∩ A′).
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2.1.4 Second case

Let’s define
O′′ := {m ∈ O : nr ≤ mg(2c′+1) ∀pr ∈ A2,b \ f−1

1 (C(β1))} .

We prove that the set O′′ is finite. Suppose by contradiction they are infinitely many. Here, we complete
our sequence of positive constants by c6, c7.

Let’s continue with our point p ∈ F∩A′ such that b = f2(p) ∈ ∆, but now suppose m ∈ O′′. Consider
the above covering {Aj} of ∆: we work again in one of those compact sets that contains b, which we now
call A. Consider again the abelian scheme X → Fb and decompose Tb as a finite union of compact subsets
{Di} as above and consider the analogous definable family Z with fibers Zb. Keeping the same notation
as above, by Proposition 2.2 and since we are supposing O′′ to be unbounded, there exists m ∈ O′′ and
τ ∈ Σp,A such that there are at least m/2 elements of the type f1(p

τ +rσ2(b
τ )) which don’t lie in f1(Vbτ );

fix this K-embedding τ ∈ Σp,A.
For any r = 0, . . . ,m − 1 define zr := pτ + rσ2(b

τ ). Then, for the previous ≥ m/2 values of r the
point zr is a torsion value of the scheme X → Fb whose order is nr. Precisely, in the counting of the
≥ m/2 values we have to exclude points which lie into the indeterminacy locus of f1, but they are a finite
number which only depends on the initial data. Equivalently, there is a subset J ⊂ {0, . . . ,m− 1} with

#J ≫ m such that for any r ∈ J the coordinates β
(b)
1,X (zr), . . . , β

(b)
2g,X (zr) are rational numbers, but with

denominator ≤ mg(2c′+1) thanks to the hypotheses of the “second case”.
As above, taking δ small enough we can assume zr ∈ Tb(C) for any r ∈ J . Hence, by applying

Proposition 1.2, we obtain a number of distinct rational points βX (zr) which is ≫ m, say ≥ c6m. Again,
they have height ≪ mg(2c′+1), say ≤ c7m

g(2c′+1) for a uniform constant (see Remark 2.4). Therefore we
get

N(Zb, c7m
g(2c′+1)) ≥ c6m. (27)

On the other hand by [25, Theorem 1.9]:

N(Zb − Zalg
b , c7m

g(2c′+1)) ≤ c(Z, ε)cε7m
εg(2c′+1), with ε <

1

g(2c′ + 1)
. (28)

At this point by reasoning exactly as in the previous case it is possible to show that Zalg
b is empty. Also

here we have to appeal to Remark 2.5: the case g = 1 needs a slightly different approach with a definable
family in R2×R4; again, all the details are in [9]. Therefore from Equations (27) and (28) (and the choice
of ε) we finally obtain:

m ≤
(
c(Z, ε)cε7

c6

) 1
1−εg(2c′+1)

.

This bound holds uniformly on A and since {Aj} is a fixed finite covering, then we get a uniform bound
for m ∈ O′′ on the whole ∆. By Proposition 1.10 applied as at the end of the first case, we get the
contradiction.

2.2 Some comments on the shape of Z1 and Z2

We list some subsets that are contained in the sets Z1 and Z2 of Theorem 0.2. They are essentially the
closed subsets that already show up in Equation (15). We removed those sets at the beginning of the
proof (see Remark 0.5), so they consequently fall inside Z1 and Z2:

(i) The locus of S1(C) on which the two families have coinciding fibers lies in Z1 by assumptions (see
beginning of Section 2.1.1).

(ii) The locus of S1(C) on which the Betti map is not a submersion is in Z1.

(iii) Let Ci := Si \ S′
i be the complementary sets of the open dense sets with uniform bounded height

arising from the height inequality. Then Ci ⊆ Zi.

(iv) The subset ∆i is contained in Zi.

Remark 2.6. Thanks to the previous considerations, we get explicit expressions of Z1 and Z2 as it
follows:

Z1 = ∆1 ∪ C1 ∪ E ∪ C(β1) ∪ f1(A1 \ A2), Z2 = ∆2 ∪ C2 ∪O.
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In turns, O is contained in

σ−1
2

 ⋃
N≤C

A2[N ]


but unfortunately the constant C is implicit.

When 1 = dimS1 = dimS2 = g we get S1 = S2 = P1, then we denote both bases simply by S. In
this case the subsets Ci are actually empty for obvious reasons and the locus f−1

1 (E) can be equivalently
taken as a finite set of f2-fibers. Moreover also the closed set of the item (iii) doesn’t need to be removed,
in fact since the Betti map is not constant and the base S is an irreducible curve, even if there are critical
points, the fibers of β1 are all finite, hence Gabrielov theorem holds everywhere.

Finally the following proposition shows that, still in the case 1 = dimS = g, all points of F∩ f−1
1 (∆1)

are contained in some f−1
2 (Z) for a proper Zariski closed subset Z. In other words we recover the stronger

result F ⊆ f−1
2 (Z) of [9].

Proposition 2.7. Let 1 = dimS = g, then there exists a proper closed Zariski subset Z ⊂ S(C) such
that:

F ∩ f−1
1 (∆1) ⊆ f−1

2 (Z).

Proof. Assume that ∆1 has cardinality n. Put Y = F ∩ f−1
2 (Z2) where Z2 is the proper Zariski closed

subset arising from Theorem 0.2. So there exists a finite set W ⊂ S such that f2(Y ) = W . By Bézout
theorem we know that #(A2,s(C) ∩ f−1

1 (∆1)) ≤ 9n. Let’s put H = F ∩ f−1
1 (∆1) and let’s consider the

following partition of H:

H1 := {p ∈ H : #(O(p)) ≤ 9n}, H2 := {p ∈ H : #(O(p)) > 9n}.

Note that

f2(H1) ⊆ σ−1
2

(
9n⋃

N=1

A[N ]

)
which is a finite set W1; so let us focus on H2. Fix p ∈ H2 and observe that there exists r ∈ N such that
tr2(p) /∈ f−1

1 (∆1). If not, we would have O(p) = {tr2(p) : r ∈ N} ⊆ f−1
1 (∆1)∩A2,s(C) where #(O(p)) > 9n

and this is a contradiction. So f2(t
r
2(p)) = f2(p) ∈ W since t2 acts on the f2-fibers and tr2(p) ∈ Y . The

claim follows if we put Z = W ∪W1.
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